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Cellular automata

I Each cell has a finite state space

I State of a cell depends on state of a finite number of cells at
previous time step

I Local evolution function the same everywhere and everywhen



Gandy’s hypotheses

I Same everywhere everywhen: homogeneity of time and space

I Finite number of cells: bounded velocity of information

I Finite state space: bounded density of information



Bounded density of information

1981: 380 km/h, 1990: 515 km/h, 2007: 574 km/h
But this has to stop (c)

2000: 1 Gb, 2009: Gb, 2013: 1 Tb But this has to stop

Gandy - Bekenstein: a bound (h)



This is not a real number

Distances, coordinates, ... in R ∆Z: discrete spacetime



If Gandy’s hypotheses are verified

Any system (can be simulated by | is) a cellular automaton

Digital physics: model phenomena with differential equations
cellular automata

This talk: towards gravitation (general relativity) as a cellular
automaton



Motion in a cellular automaton

States: {q, ..., }
All cells are quiescent (q) except one: the particle

Evolution rules preserve this invariant



Metric

In special relativity, when changing reference frame
x2 + y2 not preserved, t2 not preserved
But “distance” t2 − x2 − y2 preserved

(
t x y

)1 0 0
0 −1 0
0 0 −1

t
x
y


Metric tensor 1 0 0

0 −1 0
0 0 −1


Same everywhere
Free particle: constant velocity: spacetime straight line
A geodesic of this metric (same everywhere)



Gravitational attraction of a point mass (star)

Not a force, but a modification of the metric tensor at 〈t, x , y〉1− 2m
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where r =

√
x2 + y2, m mass of the star in m, i.e. G

c2
M

Schwarzschild’s metric: solution of Einstein’s eq. for point mass



What is a geodesic in a discrete spacetime?

Geodesic: shortest and straightest path between two points

w(E ,F ,G ) measures how E ,F ,G deviates from going straight
ahead, e.g. (external) angle in F
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G chosen to minimize (external) angle in F
Discrete-time continuous-space spacetime:
E0,E1,E2,E3, ... geodesic if for all i , w(Ei−1,Ei ,Ei+1) = 0



From the continuous to the discrete

Too strong in discrete space

w(Ei−1,Ei ,Ei+1) minimum for local variations of Ei+1: for any
spatial neighbor G of Ei+1

w(Ei−1,Ei ,G ) ≥ w(Ei−1,Ei ,Ei+1)

Algorithm:
Ei−1, Ei given
Pick random Ei+1

If w(Ei−1,Ei ,Ei+1) not local minimum replace Ei+1 by a better
neighbor and iterate



Metrics and deviations

l(E ,F ,G ) = d(E ,F ) + d(F ,G )

E

G

F

In the continuous case

w(E , 〈t, x , y〉,G ) =

(∂t l(E , 〈t, x , y〉,G ))2 + (∂x l(E , 〈t, x , y〉,G ))2 + (∂y l(E , 〈t, x , y〉,G ))2

In the discrete case: replace derivatives with finite differences



Towards a cellular automaton

Schwarzschild’s metric −→ distance −→ deviation function −→
algorithm to compute geodesics

State: presence or absence of planet + value of metric tensor at
this point

Locality: the velocity of the planet is bounded by c

Still big rules

But discrete



Experimental results

Almost only integers in the program
A fake planet very close to the Sun (maximize relativistic effects)
Perihelion shift 6.27◦, expected 6.17◦

No (t yet) similar results for Mercury: very small shift



Theoretical results

Continuous trajectories when step −→ 0

Unlike other discrete formulations of General relativity

Trap difficult to avoid: (fg)′ = f ′g + fg ′ second term forgotten
when g is taken locally constant



Conclusion

Physicists and computer scientists agree: no way to encode an
unbounded amount of information in a bounded physical system

But the continuous formulations of physics implicitly assume the
contrary

Physics can be reformulated in a discrete (and computational) way

Still a lot to be done:
Mercury?
More natural automata e.g. how does the planet know the star is
there: messenger particles should be included


