Five-Card Secure Computations Using Unequal Division Shuffle

<u>Akihiro Nishimura¹, Takuya Nishida¹, Yu–ichi Hayashi², Takaaki Mizuki³, and Hideaki Sone³</u>

1 Sone-Mizuki Laboratory, Graduate School of Information Sciences, Tohoku University 2 Faculty of Engineering, Tohoku Gakuin University 3 Cyberscience Center, Tohoku University

TPNC2015 December, 16 10:45~11:10

- 1. Introduction
- 2. Card Shuffling Operations and Known Protocol
- 3. Improved Cheung's AND Protocol
- 4. Five-Card Copy Protocols
- 5. Conclusion

1.1 Introduction

Suppose that Alice and Bob have Boolean values $a \in \{0,1\}$ and $b \in \{0,1\}$, and they want to conduct secure AND computation.

Protocol	# of cards	Shuffle
Six-card AND [6]	6	Random Bisection Cut

[6] Mizuki, T., Sone, H. Six-card secure AND and four-card secure XOR. Frontiers in Algorithmics, LNCS, vol. 5598, pp.358-369. Springer Berlin Heidelberg (2009)

AND Protocols

Protocol	# of cards	Shuffle	Failure rare
Six-card AND [6]	6	Random Bisection Cut	0%
Cheung's AND [2]	5	Unequal Division Shuffle	50%

[2]Eddie Cheung, Chris Hawthorne, and Patrick Lee, CS 758 project: secure computation with playing cards, http://csclub.uwaterloo.ca/~cdchawth/static/secure_playing cards.pdf, 2013. (last visitedJune 22, 2015)

4

AND Protocols

Protocol	# of cards	Shuffle	Failure rare
Six-card AND [6]	6	Random Bisection Cut	0%
Cheung's AND [2]	5	Unequal Division Shuffle	50%
Ours	5	Unequal Division Shuffle	0%

1.1 Introduction

Copy Protocols

Protocol	# of cards	Shuffle	Avg. # of trials
Six-card Copy [6]	6	Random Bisection Cut	1
Ours	5	Unequal Division Shuffle	2

1.2 Preliminary Notations

The Cards' Properties

- 1. All cards of the same type are indistinguishable from one another.
- 2. Each card has the same pattern on its back side.

1.2 Preliminary Notations

Encoding Scheme

1.2 Preliminary Notations

Commitment

A pair of face-down cards which describes the value of $x \in \{0,1\}$ with the encoding scheme.

Commitment to $x \in \{0,1\}$:

- 1. Introduction
- 2. Card Shuffling Operations and Known Protocol
- 3. Improved Cheung's AND Protocol
- 4. Five-Card Copy Protocols
- 5. Conclusion

2.1 Bisection Cut

Suppose that there is a sequence of 2m face-down cards.

Bisect the sequence and randomly switch the two portions.

The result of the operation will be either

where each occurs with a probability of exactly 1/2.

2.1 Bisection Cut

Example: 6 cards

2.2 Unequal Division Shuffle

Suppose that there is a sequence of ℓ face-down cards.

Divide it into two portions of unequal sizes (*j* cards and *k* cards). Then randomly switch these two portions.

We refer to it as unequal division shuffle or (j, k)-division shuffle.

Thus, the result of the operation will be either

where each occurs with a probability of exactly 1/2.

2.2 Unequal Division Shuffle

Example: total of 5 cards, (2,3)-division shuffle

Cheung's AND Protocol [2] It requires only one additional card.

Protocol	# of cards	Shuffle	Failure rare
Cheung's AND [2]	5	Unequal Division Shuffle	50%

1. Arrange the cards of the two input commitments (a, b) and the additional card.

- 2. Apply (2,3)-division shuffle.
- 3. Reveal the card at position 1.
 - If \clubsuit , then the cards at positions 2 and 3 constitute a commitment to $a \wedge b$.
 - If 💌 , tł
 - , then Alice and Bob create input commitments again to restart the protocol.

Step 1: Arrange the five cards.

Step 2: Apply (2,3)-division shuffle.

Example: in case of success

Step 3: Reveal the card at position 1.

2()

Example: in case of failure

Step 3: Reveal the card at position 1.

Restart the protocol from scratch.

2.3 Cheung's AND Protocol Cheung's AND protocol

Protocol	# of cards	Shuffle	Failure rare
Cheung's AND [2]	5	Unequal Division Shuffle	50%

- 1. Introduction
- 2. Card Shuffling Operations and Known Protocol
- 3. Improved Cheung's AND Protocol
- 4. Five-Card Copy Protocols
- 5. Conclusion

3.1 Bonus Commitment to OR

The OR value $a \lor b$ is simultaneously obtained at positions 4 and 5 when we succeed in obtaining a commitment to $a \land b$.

	Card sequenses			
Input (a, b)	a^0 \clubsuit $a^1 b^0 b^1$	$a^1 b^0 b^1 a^0 \clubsuit$		
(0,0)				
(0,1)	* *			
(1,0)				
(1,1)				

3.2 In Case of Failure

In case of failure (Cheung's AND protocol)

If the card at position 1 is v, then restart the protocol.

?????

The other \forall position corresponds to the input *a*, *b*.

Their protocol does not fail.

We can still evaluate the AND value as a non-committed protocol.

*non-committed protocol: The output is not a commitment.

3.2 In Case of Failure

The other \checkmark position corresponds to the input *a*, *b*.

Computation of AND value

Reveal the card at position 4.

If
$$\mathbf{V}$$
, then $a \wedge b = 1$.

3.2 In Case of Failure

The other \checkmark position corresponds to the input *a*, *b*.

Shuffle all cards at positions corresponding to f(a, b) = 1and reveal them. If there is \checkmark , then f(a, b) = 1; otherwise f(a, b) = 0.

3.3 Improved Cheung's AND Protocol

1. Arrange the cards of the two input commitments (a, b) and the additional cards.

2. Apply (2,3)-division shuffle.

3.3 Improved Cheung's AND Protocol

3. Reveal the card at position 1.

- 1. Introduction
- 2. Card Shuffling Operations and Known Protocol
- 3. Improved Cheung's AND Protocol
- 4. Five-Card Copy Protocols
- 5. Conclusion

4 Five-Card Copy Protocols

Six-Card Copy Protocol[6] The most efficient protocol currently known.

We propose five-card copy protocol using unequal division shuffle.

This means three additional cards are sufficient to copy a commitment.

4. Reveal the card at position 5.

Swap the cards at positions 1 and 2 to obtain a commitment to *a*. After revealing the cards at positions 3 and 4, return to step 1.

The possibility of card sequences after step 3.

Input

Step 1: Arrange the five cards.

Step 2: Apply (2,3)-division shuffle.

Step 3: Rearrange the cards.

In case that two copies are obtained.

Step 4: Reveal the card at position 5.

In case of returning to step 1.

Step 4: Reveal the card at position 5.

In case of returning to step 1.

Swap the cards at positions 1 and 2.

In case of returning to step 1.

Return to step 1.

Copy Protocols

Protocol	# of cards	Shuffle	Avg. # of trials
Six-card Copy [6]	6	Random Bisection Cut	1
Ours	5	Unequal Division Shuffle	2

To reduce the number of steps, we consider:

Double Unequal Division Shuffle

4 5

1 2 3

(2,3)-division shuffle changes the order of the two portions.

Here, we consider a further division of the three-card portion:

However, we are not sure whether this shuffle can be easily implemented by humans.

5

1. Arrange the five cards.

 $\begin{array}{c} ? ? ? ? ? ? \\ a^0 & \bullet & \bullet & a^1 \end{array}$

2. Apply double unequal division shuffle.

?????

3. Reveal the card at position 1.

lf

lf

, then we have negation of a.

Swap the cards at positions 2 and 3 to obtain a commitment to *a*. After revealing the cards at positions 4 and 5, return to step 1.

The possibility of card sequences after step 3.

- 1. Introduction
- 2. Card Shuffling Operations and Known Protocol
- 3. Improved Cheung's AND Protocol
- 4. Five-Card Copy Protocols
- 5. Conclusion

5 Conclusion

AND Protocols

Protocol	# of cards	Shuffle	Failure rare	Output (Input(<i>a</i> , <i>b</i>))
Six-card AND [6]	6	Random Bisection Cut	0%	?? a∧b
Cheung's AND [2]	5	Unequal Division Shuffle	50%	?? a∧b
Ours	5	Unequal Division Shuffle	0%	$\begin{array}{c} & & & \\ & & & \\ & a \wedge b \\ & & &$

Copy Protocols

Protocol	# of cards	Shuffle	Avg. # of trials
Six-card Copy [6]	6	Random Bisection Cut	1
Ours	5	Unequal Division Shuffle	2