

Natural parsing: a psycholinguistically motivated computational language processing model

Gábor Prószéky – <u>Balázs Indig</u>

Pázmány Péter Catholic University, Faculty of Information Technology and Bionics Budapest, Hungary MTA-PPKE Hungarian Language Technology Research Group

{proszeky.gabor,indig.balazs}@itk.ppke.hu

Introduction: Our parser

- Input: natural language sentences
 - In raw or tokenised form
- Output: semantic representation
 - Identify facts from text that are not explicitly available
- Method: human parser motivated parallel system
 - Use any information that is available (statistical or rule-based)
- Prototype for Hungarian
 - Hand-written rules (norm) and statistics (simulate experience)

Psycholinguistic parsing: A computational model

- Bever (1970): "Parsing" is not inverted generation
- Kimbal (1973): Seven principles on parsing
 - Existence of a "supreme decision-maker"
- Frazier and Fodor (1978): delayed decisions
 - "Garden path" sentences
- Prószéky (2000): Parser can override the lexicon
 Linguistic decisions during parsing have higher priority
- Pléh & Lukács (2014): Human parsing has patterns
 Some of them are identified and we follow them

Psycholinguistic parsing: A computational model

- Instead of sentences we process utterances
 - Can span multiple coherent sentences
- Representation is not a traditional "parse Tree"
 But a DAG with colored edges and labels on them

- Distant from traditional computational models
 - Which are plagued by generative grammar
 - And only care about the result of the parser

Architecture: Traditional vs. Parallel

Supply and Demand style processing

- Every word may have demands
 - Verbs demand their arguments to form a frame
 - Nouns demand their attributes to form a Noun Phrase
- Every word may have features to supply
 - Nouns have grammatical case
 - Possession offers itself to a matching possessor
 - Determinant offers itself to the next Noun
- Similarly to Word Expert Parser (Small 1983)

Properties of the parser

- Does not have part-of-speech disambiguation
 - Only an n-gram model of the previous words
 - Still avoids combinatoric explosion as most paths can not continue after one or two steps
- Mixes syntactic, semantic (and other) structures Use everything to aid parsing just like a human parser
- Makes exactly the same mistakes as humans do
 - Backtrack only when it's really needed (Grice 1975)

Example

pázmány péter catholic university FACULTY OF INFORMATION TECHNOLOGY AND BIONICS

Modules

- Automatically build a corpus from the web
- Text normalisation (unaccented text, spell check)
 A module is designed to estimate text quality
- Building a sentence skeleton bank
 - Noun phrases are stripped from the sentence
- Factored n-gram patterns used for "caching"
- Verb frame database with semantic information
 With the help of rule-based and statistic resources

PÁZMÁNY PÉTER CATHOLIC UNIVERSITY

FACULTY OF INFORMATION TECHNOLOGY AND BIONICS

See you at the poster stand!