

Fault Classification of a Centrifugal Pump in Normal and Noisy Environment with Artificial Neural Network and Support Vector Machine Enhanced by a Genetic Algorithm

A. Nourmohammadzadeh and S. Hartmann, Department of Informatics, Clausthal University of Technology, Germany 15. Dezember 2015

• Condition monitoring of a centrifugal pump is absolutely necessary:

 \checkmark Because the role of centrifugal pumps is of great importance in many industries.

 $\sqrt{10}$ To prevent early failure and production line breakdown.

 \checkmark To improve plant safety, efficiency and reliability.

 \checkmark Pumps, compressors and piping are causes of the major equipment failure in oil and gas plants.

• Centrifugal pumps are sensitive to:

(1) Variation in liquid condition (i.e. viscosity, specific gravity, and temperature).

(2) Suction variation, such as pressure and availability of a continuous volume of fluid.

 \checkmark To prevent early failure and production line breakdown.

 \checkmark To improve plant safety, efficiency and reliability.

 \checkmark Pumps, compressors and piping are causes of the major equipment failure in oil and gas plants.

• Centrifugal pumps are sensitive to:

(1) Variation in liquid condition (i.e. viscosity, specific gravity, and temperature).

(2) Suction variation, such as pressure and availability of a continuous volume of fluid.

Condition monitoring of a centrifugal pump is absolutely necessary:
 ✓ Because the role of centrifugal pumps is of great importance in many industries.

\checkmark To prevent early failure and production line breakdown.

/ To improve plant safety, efficiency and reliability.

 \checkmark Pumps, compressors and piping are causes of the major equipment failure in oil and gas plants.

Centrifugal pumps are sensitive to:

(1) Variation in liquid condition (i.e. viscosity, specific gravity, and temperature).

(2) Suction variation, such as pressure and availability of a continuous volume of fluid.

- Condition monitoring of a centrifugal pump is absolutely necessary:
 ✓ Because the role of centrifugal pumps is of great importance in many industries.
 - \checkmark To prevent early failure and production line breakdown.
 - \checkmark To improve plant safety, efficiency and reliability.
 - \checkmark Pumps, compressors and piping are causes of the major equipment failure in oil and gas plants.
- Centrifugal pumps are sensitive to:
 - (1) Variation in liquid condition (i.e. viscosity, specific gravity, and temperature).
 - (2) Suction variation, such as pressure and availability of a continuous volume of fluid.
 - (3) Variation in demand.

- Condition monitoring of a centrifugal pump is absolutely necessary:
 ✓ Because the role of centrifugal pumps is of great importance in many industries.
 - \checkmark To prevent early failure and production line breakdown.
 - \checkmark To improve plant safety, efficiency and reliability.
 - \checkmark Pumps, compressors and piping are causes of the major equipment failure in oil and gas plants.
- Centrifugal pumps are sensitive to:

 (1) Variation in liquid condition (i.e. viscosity, specific gravity, and temperature).
 - (2) Suction variation, such as pressure and availability of a continuous volume of fluid.
 - (3) Variation in demand.

- Condition monitoring of a centrifugal pump is absolutely necessary:
 ✓ Because the role of centrifugal pumps is of great importance in many industries.
 - \checkmark To prevent early failure and production line breakdown.
 - \checkmark To improve plant safety, efficiency and reliability.
 - \checkmark Pumps, compressors and piping are causes of the major equipment failure in oil and gas plants.

Centrifugal pumps are sensitive to:

(1) Variation in liquid condition (i.e. viscosity, specific gravity, and temperature).

(2) Suction variation, such as pressure and availability of a continuous volume of fluid.

- Condition monitoring of a centrifugal pump is absolutely necessary:
 ✓ Because the role of centrifugal pumps is of great importance in many industries.
 - \checkmark To prevent early failure and production line breakdown.
 - \checkmark To improve plant safety, efficiency and reliability.
 - \checkmark Pumps, compressors and piping are causes of the major equipment failure in oil and gas plants.
- Centrifugal pumps are sensitive to:
 - (1) Variation in liquid condition (i.e. viscosity, specific gravity, and temperature).
 - (2) Suction variation, such as pressure and availability of a continuous volume of fluid.
 - (3) Variation in demand.

- The data of a real centrifugal pump in a petroleum industry located in the south of Iran is used.
- The data consists of 7 columns, flow , temperature, suction pressure, discharge pressure, velocity , vibration and the last column is the fault class related to these features ranged from 1 to 5.

		f	

- The data of a real centrifugal pump in a petroleum industry located in the south of Iran is used.
- The data consists of 7 columns, flow , temperature, suction pressure, discharge pressure, velocity , vibration and the last column is the fault class related to these features ranged from 1 to 5.

Flow	Temperature	Suction Pressure	Discharge Pressure	Velocity	Vibration	Fault Type
57	96	20	700	3.5	7.67	3
а	b	с	d	e	f	?

- Due to the fact that failure diagnosis by human is time consuming and human errors may happen, using artificial intelligence and machine learning classification methods has gained popularity to develop a diagnostic scheme.
- Artificial Neural Networks (ANNs), which are inspired from the biological nervous systems, have been widely used by researchers in the field of classification.
- Support Vector Machine (SVM) presented by Vapnik 1995 is a strong classification method based on the Structural Risk Minimisation (RSM).

- Due to the fact that failure diagnosis by human is time consuming and human errors may happen, using artificial intelligence and machine learning classification methods has gained popularity to develop a diagnostic scheme.
- Artificial Neural Networks (ANNs), which are inspired from the biological nervous systems, have been widely used by researchers in the field of classification.
- Support Vector Machine (SVM) presented by Vapnik 1995 is a strong classification method based on the Structural Risk Minimisation (RSM).

- Due to the fact that failure diagnosis by human is time consuming and human errors may happen, using artificial intelligence and machine learning classification methods has gained popularity to develop a diagnostic scheme.
- Artificial Neural Networks (ANNs), which are inspired from the biological nervous systems, have been widely used by researchers in the field of classification.
- Support Vector Machine (SVM) presented by Vapnik 1995 is a strong classification method based on the Structural Risk Minimisation (RSM).

- Due to the fact that failure diagnosis by human is time consuming and human errors may happen, using artificial intelligence and machine learning classification methods has gained popularity to develop a diagnostic scheme.
- Artificial Neural Networks (ANNs), which are inspired from the biological nervous systems, have been widely used by researchers in the field of classification.
- Support Vector Machine (SVM) presented by Vapnik 1995 is a strong classification method based on the Structural Risk Minimisation (RSM).

ANN Structure

 $W = \begin{vmatrix} w_{1,1} & w_{1,2} & w_{1,3} \\ w_{2,1} & w_{2,2} & w_{2,3} \\ w_{3,1} & w_{3,2} & w_{3,3} \end{vmatrix}$

 $B = [b_1, b_2, b_3, b_4]$, $L = [l_1, l_2, l_3,]$, $C = [c_1, c_2, c_3, c_4]$.

- Choosing the best amounts for the above parameters can improve the classification performance of the ANN.
- Besides the conventional training methods, we apply Genetic Algorithm, which is a powerful evolutionary optimisation algorithm and is able to obtain solution of good qualities in real time.
- The fitness of each chromosome:

Fitness function = 1 – percentage of correct predicted classes = $1 - \frac{N_c}{N_T}$

$$W = \begin{vmatrix} w_{1,1} & w_{1,2} & w_{1,3} \\ w_{2,1} & w_{2,2} & w_{2,3} \\ w_{3,1} & w_{3,2} & w_{3,3} \end{vmatrix}$$

 $B = [b_1, b_2, b_3, b_4]$, $L = [l_1, l_2, l_3,]$, $C = [c_1, c_2, c_3, c_4]$.

- Choosing the best amounts for the above parameters can improve the classification performance of the ANN.
- Besides the conventional training methods, we apply Genetic Algorithm, which is a powerful evolutionary optimisation algorithm and is able to obtain solution of good qualities in real time.
- The fitness of each chromosome:

Fitness function = 1 – percentage of correct predicted classes = $1 - \frac{N_c}{N_T}$

$$W = \begin{vmatrix} w_{1,1} & w_{1,2} & w_{1,3} \\ w_{2,1} & w_{2,2} & w_{2,3} \\ w_{3,1} & w_{3,2} & w_{3,3} \end{vmatrix}$$

 $B = [b_1, b_2, b_3, b_4]$, $L = [l_1, l_2, l_3,]$, $C = [c_1, c_2, c_3, c_4]$.

- Choosing the best amounts for the above parameters can improve the classification performance of the ANN.
- Besides the conventional training methods, we apply Genetic Algorithm, which is a powerful evolutionary optimisation algorithm and is able to obtain solution of good qualities in real time.
- The fitness of each chromosome:

Fitness function = 1 – percentage of correct predicted classes = $1 - \frac{N_c}{N_T}$

$$W = \begin{vmatrix} w_{1,1} & w_{1,2} & w_{1,3} \\ w_{2,1} & w_{2,2} & w_{2,3} \\ w_{3,1} & w_{3,2} & w_{3,3} \end{vmatrix}$$

 $B = [b_1, b_2, b_3, b_4]$, $L = [l_1, l_2, l_3,]$, $C = [c_1, c_2, c_3, c_4]$.

- Choosing the best amounts for the above parameters can improve the classification performance of the ANN.
- Besides the conventional training methods, we apply Genetic Algorithm, which is a powerful evolutionary optimisation algorithm and is able to obtain solution of good qualities in real time.
- The fitness of each chromosome: Fitness function = 1 - percentage of correct predicted classes = $1 - \frac{N_c}{N_T}$
- Other characteristics: Population size = 200, Crossover percentage = 0.7, Mutation percentage = 0.3, Maximum of Iterations = 100

$$W = \begin{vmatrix} w_{1,1} & w_{1,2} & w_{1,3} \\ w_{2,1} & w_{2,2} & w_{2,3} \\ w_{3,1} & w_{3,2} & w_{3,3} \end{vmatrix}$$

 $B = [b_1, b_2, b_3, b_4]$, $L = [l_1, l_2, l_3,]$, $C = [c_1, c_2, c_3, c_4]$.

- Choosing the best amounts for the above parameters can improve the classification performance of the ANN.
- Besides the conventional training methods, we apply Genetic Algorithm, which is a powerful evolutionary optimisation algorithm and is able to obtain solution of good qualities in real time.
- The fitness of each chromosome:

Fitness function = 1 – percentage of correct predicted classes = $1 - \frac{N_c}{N_T}$

$$W = \begin{vmatrix} w_{1,1} & w_{1,2} & w_{1,3} \\ w_{2,1} & w_{2,2} & w_{2,3} \\ w_{3,1} & w_{3,2} & w_{3,3} \end{vmatrix}$$

 $B = [b_1, b_2, b_3, b_4]$, $L = [l_1, l_2, l_3,]$, $C = [c_1, c_2, c_3, c_4]$.

- Choosing the best amounts for the above parameters can improve the classification performance of the ANN.
- Besides the conventional training methods, we apply Genetic Algorithm, which is a powerful evolutionary optimisation algorithm and is able to obtain solution of good qualities in real time.
- The fitness of each chromosome:

Fitness function = 1 – percentage of correct predicted classes = $1 - \frac{N_c}{N_T}$

The procedure of the applied ANN-GA

SVM Structure

In SVM (SVC), we have a set of training input $D = \{(x_1, x_2), ..., (x_i, y_i)\}$, where $x \in R^d$ and $y \in \{-1, 1\}$ is the class label, i = 1, ..., I. The method seeks to find a separating hyper plane that maximises the distance to the nearest data points of each class. This goal is met by minimising the following objective function:

$$Max \ \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{l} \varepsilon_i$$

$$(1)$$
Subject to $y_i [W^T . \Phi(x_i)] \ge 1 - \varepsilon_i$

$$\varepsilon_i \ge 0, i = 1, ..., l$$

SVM Structure

In SVM (SVC), we have a set of training input $D = \{(x_1, x_2), ..., (x_i, y_i)\}$, where $x \in R^d$ and $y \in \{-1, 1\}$ is the class label, i = 1, ..., I. The method seeks to find a separating hyper plane that maximises the distance to the nearest data points of each class. This goal is met by minimising the following objective function:

$$Max \ \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{l} \varepsilon_i \tag{1}$$

Subject to $y_i [W^T . \Phi(x_i)] \ge 1 - \varepsilon_i \tag{2}$
 $\varepsilon_i \ge 0, i = 1, ..., l$

$$Max \sum_{i=1}^{l} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{i} \alpha_{j} K(x_{i}, x_{j})$$
(3)
$$Subject \ to \ \sum_{i=1}^{l} \alpha_{i} y_{i} = 0$$
(4)
$$0 \le \alpha_{i} \le C, i = 1, ..., l$$

Solving the dual problem leads to the optimal separating hyper plane as following:

$$\sum_{SV} \alpha_i y_i K(x_i, x_j) + b = 0$$
(5)

$$f = sgn(b + \alpha_i[y_i K(x_i, x_j)])$$
(6)

$$Max \sum_{i=1}^{l} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{i} \alpha_{j} K(x_{i}, x_{j})$$
(3)

$$Subject \ to \ \sum_{i=1}^{l} \alpha_{i} y_{i} = 0$$
(4)

$$0 \le \alpha_{i} \le C, i = 1, ..., l$$

Solving the dual problem leads to the optimal separating hyper plane as following:

$$\sum_{SV} \alpha_i y_i K(x_i, x_j) + b = 0$$
(5)

$$f = sgn(b + \alpha_i[y_i K(x_i, x_j)])$$
(6)

$$Max \sum_{i=1}^{l} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{i} \alpha_{j} K(x_{i}, x_{j})$$
(3)

Subject to
$$\sum_{i=1}^{l} \alpha_i y_i = 0$$

$$0 \le \alpha_i \le C, i = 1, ..., l$$
(4)

Solving the dual problem leads to the optimal separating hyper plane as following:

$$\sum_{SV} \alpha_i y_i K(x_i, x_j) + b = 0$$
(5)

$$f = sgn(b + \alpha_i[y_i K(x_i, x_j)])$$
(6)

$$Max \sum_{i=1}^{l} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{i} \alpha_{j} K(x_{i}, x_{j})$$
(3)

Subject to
$$\sum_{i=1}^{l} \alpha_i y_i = 0$$

$$0 \le \alpha_i \le C, i = 1, ..., l$$
(4)

Solving the dual problem leads to the optimal separating hyper plane as following:

$$\sum_{SV} \alpha_i y_i K(x_i, x_j) + b = 0$$
(5)

And the optimal classifying rule is:

 $f = sgn(b + \alpha_i[y_i K(x_i, x_j)])$ (6)

$$Max \sum_{i=1}^{l} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{i} \alpha_{j} K(x_{i}, x_{j})$$
(3)

Subject to
$$\sum_{i=1}^{l} \alpha_i y_i = 0$$
 (4)
 $0 \le \alpha_i \le C, i = 1, ..., l$

Solving the dual problem leads to the optimal separating hyper plane as following:

$$\sum_{SV} \alpha_i y_i K(x_i, x_j) + b = 0$$
(5)

$$f = sgn(b + \alpha_i[y_i K(x_i, x_j)])$$
(6)

 $\begin{aligned} & \text{Polynomial} : K(x_i, x_j) = (\gamma. < x_i, x_j > +s)^d & (7) \\ & \text{Gaussian basis function} : K(x_i, x_j) = -\gamma. \|x_i - x_j\|^2 & (8) \\ & \text{Linear} : K(x_i, x_j) = < x_i, x_j > & (9) \\ & \text{Quadratic} : K(x_i, x_j) = (< x_i, x_j > +1)^2 & (10)_{30/2} \end{aligned}$

 $\begin{aligned} & \text{Polynomial} : K(x_i, x_j) = (\gamma. < x_i, x_j > +s)^d & (7) \\ & \text{Gaussian basis function} : K(x_i, x_j) = -\gamma. \|x_i - x_j\|^2 & (8) \\ & \text{Linear} : K(x_i, x_j) = < x_i, x_j > & (9) \\ & \text{Quadratic} : K(x_i, x_j) = (< x_i, x_j > +1)^2 & (10)_{31/2} \end{aligned}$

$$Polynomial: K(x_i, x_j) = (\gamma . < x_i, x_j > +s)^d$$

$$\tag{7}$$

Gaussian basis function : $K(x_i, x_j) = -\gamma . \|x_i - x_j\|^2$

$$Linear: K(x_i, x_j) = \langle x_i, x_j \rangle$$
(9)

Quadratic : $K(x_i, x_j) = (\langle x_i, x_j \rangle + 1)^2$ (10)

2/46

(8)

Procedure of the applied SVM-GA

- We have altogether 100 rows of data.
- 70% of data are randomly considered for training and 30% as testing data.
- To make the data noisy for testing the robustness of the approaches, 0.1 is added to 30% of columns 1, 3, and 6 of the data sheet.

ANN	SVM					

- We have altogether 100 rows of data.
- 70% of data are randomly considered for training and 30% as testing data.
- To make the data noisy for testing the robustness of the approaches, 0.1 is added to 30% of columns 1, 3, and 6 of the data sheet.

ANN		SVM					

- We have altogether 100 rows of data.
- 70% of data are randomly considered for training and 30% as testing data.
- To make the data noisy for testing the robustness of the approaches, 0.1 is added to 30% of columns 1, 3, and 6 of the data sheet.

ANN	SVM				

- We have altogether 100 rows of data.
- 70% of data are randomly considered for training and 30% as testing data.
- To make the data noisy for testing the robustness of the approaches, 0.1 is added to 30% of columns 1, 3, and 6 of the data sheet.

ANN			SVM				
		Linear	Quadratic	Gaussian	Polynomial		
Normal	0.8	0.866	0.833	0.933	0.8		
Noisy	0.7	0.8333	0.766	0.866	0.733		

	ANN-GA		SVM-GA			KNN	Decision Tree
-		Linear	Quadratic	Gaussian	Polynomial		
Normal	0.866	0.9	0.833	1	0.933	0.9	0.666
Noisy	0.733	0.9	0.866	1	0.766	0.533	0.5

The improvements by GA

	ANN-GA		SVM-GA			KNN	Decision Tree
-		Linear	Quadratic	Gaussian	Polynomial		
Normal	0.866	0.9	0.833	1	0.933	0.9	0.666
Noisy	0.733	0.9	0.866	1	0.766	0.533	0.5

The improvements by GA

MCNemar's test results (*p*-values):

	ANN-GA	SVM	ANN	Decision Tree	KNN
Normal Environment					
SVC-GA	0.1336	0.4795	0.0412	0.0044	0.0044
ANN-GA		0.6171	0.4795	0.0771	0.0412
SVC			0.1336	0.0133	0.0133
ANN				0.1138	0.0771
Decision Tree					0.7518
Noisy Environment					
SVC-GA	0.1333	0.1336	0.0077	0.0003	0.0003
ANN-GA		0.2207	1	0.0455	0.0771
SVC			0.1306	0.0026	0.0044
ANN				0.771	0.1824
Decision Tree					1

A 10-fold cross-validation:

- The data sheet is divided into 10 even subsets.
- Each of them is once used as the test dataset and the other 9 as training dataset.
- The averages of models' accuracies (proportion of correct predicted fault types) are considered for models' validity evaluation.

	Normal Environment	Noisy Environment
SVC-GA	0.95	0.95
SVC	0.9	0.85
ANN-GA	0.85	0.75
ANN	0.85	0.8
KNN	0.6	0.6
Decision Tree	0.6	0.5

• GA can significantly improve the performance of the classifiers.

- SVM with Gaussian kernel function had the best accuracy in correct fault diagnosis and an excellent robustness against noise.
- SVM is superior to ANN in most of the cases.

• For future research:

Testing the ability of other optimisation algorithms to improve ANN, SVM and other classification methods is recommended.

- GA can significantly improve the performance of the classifiers.
- SVM with Gaussian kernel function had the best accuracy in correct fault diagnosis and an excellent robustness against noise.
- SVM is superior to ANN in most of the cases.
- For future research:

Testing the ability of other optimisation algorithms to improve ANN, SVM and other classification methods is recommended.

- GA can significantly improve the performance of the classifiers.
- SVM with Gaussian kernel function had the best accuracy in correct fault diagnosis and an excellent robustness against noise.
- SVM is superior to ANN in most of the cases.
- For future research:

Testing the ability of other optimisation algorithms to improve ANN, SVM and other classification methods is recommended.

- GA can significantly improve the performance of the classifiers.
- SVM with Gaussian kernel function had the best accuracy in correct fault diagnosis and an excellent robustness against noise.
- SVM is superior to ANN in most of the cases.
- For future research:
 - Testing the ability of other optimisation algorithms to improve ANN, SVM and other classification methods is recommended.

Thanks a Lot For Your Attention