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Introduction

Condition monitoring of a centrifugal pump is absolutely necessary:
XBecause the role of centrifugal pumps is of great importance in many
industries.
XTo prevent early failure and production line breakdown.
XTo improve plant safety, efficiency and reliability.
XPumps, compressors and piping are causes of the major equipment failure in
oil and gas plants.
Centrifugal pumps are sensitive to:
(1) Variation in liquid condition (i.e. viscosity, specific gravity, and
temperature).
(2) Suction variation, such as pressure and availability of a continuous volume
of fluid.
(3) Variation in demand.
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Introduction

The data of a real centrifugal pump in a petroleum industry
located in the south of Iran is used.
The data consists of 7 columns, flow , temperature, suction
pressure, discharge pressure, velocity , vibration and the last
column is the fault class related to these features ranged from 1 to
5.

Flow Temperature Suction Pressure Discharge Pressure Velocity Vibration Fault Type
57 96 20 700 3.5 7.67 3
a b c d e f ?
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Introduction

Due to the fact that failure diagnosis by human is time consuming
and human errors may happen, using artificial intelligence and
machine learning classification methods has gained popularity to
develop a diagnostic scheme.
Artificial Neural Networks (ANNs), which are inspired from the
biological nervous systems, have been widely used by researchers in
the field of classification.
Support Vector Machine (SVM) presented by Vapnik 1995 is a
strong classification method based on the Structural Risk
Minimisation (RSM).

11 / 46



Introduction

Due to the fact that failure diagnosis by human is time consuming
and human errors may happen, using artificial intelligence and
machine learning classification methods has gained popularity to
develop a diagnostic scheme.
Artificial Neural Networks (ANNs), which are inspired from the
biological nervous systems, have been widely used by researchers in
the field of classification.
Support Vector Machine (SVM) presented by Vapnik 1995 is a
strong classification method based on the Structural Risk
Minimisation (RSM).

12 / 46



Introduction

Due to the fact that failure diagnosis by human is time consuming
and human errors may happen, using artificial intelligence and
machine learning classification methods has gained popularity to
develop a diagnostic scheme.
Artificial Neural Networks (ANNs), which are inspired from the
biological nervous systems, have been widely used by researchers in
the field of classification.
Support Vector Machine (SVM) presented by Vapnik 1995 is a
strong classification method based on the Structural Risk
Minimisation (RSM).

13 / 46



Introduction

Due to the fact that failure diagnosis by human is time consuming
and human errors may happen, using artificial intelligence and
machine learning classification methods has gained popularity to
develop a diagnostic scheme.
Artificial Neural Networks (ANNs), which are inspired from the
biological nervous systems, have been widely used by researchers in
the field of classification.
Support Vector Machine (SVM) presented by Vapnik 1995 is a
strong classification method based on the Structural Risk
Minimisation (RSM).

14 / 46



ANN Structure
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Parameters

W =

∣∣∣∣∣∣∣
w1,1 w1,2 w1,3
w2,1 w2,2 w2,3
w3,1 w3,2 w3,3

∣∣∣∣∣∣∣
B = [b1, b2, b3, b4] , L = [l1, l2, l3, ], C = [c1, c2, c3, c4] .
Choosing the best amounts for the above parameters can improve
the classification performance of the ANN.
Besides the conventional training methods, we apply Genetic
Algorithm, which is a powerful evolutionary optimisation algorithm
and is able to obtain solution of good qualities in real time.
The fitness of each chromosome:
Fitness function = 1 − percentage of correct predicted classes = 1 − Nc

NT

Other characteristics: Population size = 200, Crossover percentage =
0.7, Mutation percentage = 0.3, Maximum of Iterations = 100
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The procedure of the applied ANN-GA
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Fig. 1. The procedure of ANN-GA and SVC-GA. 
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        The framework of the applied SVC to obtain 5 classes 
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SVM Structure

In SVM (SVC), we have a set of training input
D = {(x1, x2), ..., (xi , yi )}, where x ∈ Rd and y ∈ {−1, 1} is the class
label, i = 1, ..., l . The method seeks to find a separating hyper plane
that maximises the distance to the nearest data points of each class.
This goal is met by minimising the following objective function:

Max 1
2‖w‖

2 + C
l∑

i=1
εi (1)

Subject to yi [W T .Φ(xi )] ≥ 1− εi (2)

εi ≥ 0, i = 1, ..., l
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Considering necessary condition for optimality, one can turn the
above minimization problem into the following dual form:

Max
l∑

i=1
αi −

1
2

l∑
i=1

l∑
j=1

αiαjK (xi , xj) (3)

Subject to
l∑

i=1
αiyi = 0 (4)

0 ≤ αi ≤ C , i = 1, ..., l

Solving the dual problem leads to the optimal separating hyper plane
as following: ∑

SV
αiyiK (xi , xj) + b = 0 (5)

And the optimal classifying rule is:

f = sgn(b + αi [yiK (xi , xj)]) (6)
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𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑦𝑖[𝑤𝑇 . ∅(𝑥𝑖) + 𝑏] ≥ 1 − 𝜀𝑖                                                                                      (2) 
                       𝜀𝑖 ≥ 0,   𝑖 = 1, … , 𝑙 
This model is called soft margin SVM and 𝜀𝑖 handles misclassifications, w is a weight vector, b is bias and C is the 
misclassification penalty to trade-off between the model complicity and training error. In equation (2), ∅(𝑥𝑖) is a 
nonlinear function and maps the input data to a high dimensional feature space where the data can be 
separated linearly. Considering necessary condition for optimality one can turn the above minimization 
problem to the following dual form: 
 

𝑀𝐴𝑋        ∑ 𝛼𝑖 −
1

2
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                       0 ≤ 𝛼𝑖 ≤ 𝐶,   𝑖 = 1, … , 𝑙                                                                                                                          (5) 
Where 𝐾(𝑥𝑖 , 𝑥𝑗) is a kernel function representing the inner product 〈∅(𝑥𝑖), ∅(𝑥𝑗)〉 and 𝛼𝑖 are lagrangian 
multipliers. Solving the dual problem lead to the optimal separating hyper plane as following: 

∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏 = 0                                                                                                                                              (6)
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And the optimal classifying rule is: 

𝑓 = 𝑠𝑔𝑛 (𝑏 + ∑[(𝛼𝑖𝑦𝑖)𝐾(𝑥𝑖 , 𝑥𝑗)]
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) 
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Where SV is the set of support vectors that the corresponding lagrangian multipliers are positive for them. 
We used the following kernel functions in our SVC for the fault diagnosis of centrifugal pump:  
 

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙:    𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾. 〈𝑥𝑖 , 𝑥𝑗〉 + 𝑠)
𝑑
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2
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Procedure of the applied SVM-GA
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Results and Comparisons
We have altogether 100 rows of data.
70% of data are randomly considered for training and 30% as
testing data.
To make the data noisy for testing the robustness of the
approaches, 0.1 is added to 30% of columns 1, 3, and 6 of the
data sheet.

ANN SVM
Linear Quadratic Gaussian Polynomial

Normal 0.8 0.866 0.833 0.933 0.8
Noisy 0.7 0.8333 0.766 0.866 0.733

 ANN SVC 

  Linear Quadratic Gaussian Polynomial 

Normal 0.8 (24) 0.866 (26) 0.833 (25) 0.933 (28) 0.8 (24) 

Noisy 0.7 (21) 0.833 (25) 0.766 (22) 0.866 (26) 0.733 (22) 

 

 ANN-GA SVC-GA KNN Decision 
Tree 

  Linear Quadratic Gaussian Polynomial   

Normal 0.866 
(26) 

0.9 (27) 0.933 (28) 1 (30) 0.9 (27) 0.666 
(20) 

0.666 
(20) 

Noisy 0.733 
(22) 

0.9 (27) 0.866 (26) 1 (30) 0.766 (23) 0.533 
(16) 

0.5 
(15) 

 

Enhancements 

 ANN SVC 

  Linear Quadratic Gaussian Polynomial 

Normal 0.066 0.034 0.1 0.067 0.1 

Noisy 0.033 0.067 0.1 0.134 0.033 
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Results and Comparisons
ANN-GA SVM-GA KNN Decision Tree

Linear Quadratic Gaussian Polynomial
Normal 0.866 0.9 0.833 1 0.933 0.9 0.666
Noisy 0.733 0.9 0.866 1 0.766 0.533 0.5
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Results and Comparisions

MCNemar’s test results (p-values):

ANN-GA SVM ANN Decision Tree KNN
Normal Environment

SVC-GA 0.1336 0.4795 0.0412 0.0044 0.0044
ANN-GA 0.6171 0.4795 0.0771 0.0412

SVC 0.1336 0.0133 0.0133
ANN 0.1138 0.0771

Decision Tree 0.7518
Noisy Environment

SVC-GA 0.1333 0.1336 0.0077 0.0003 0.0003
ANN-GA 0.2207 1 0.0455 0.0771

SVC 0.1306 0.0026 0.0044
ANN 0.771 0.1824

Decision Tree 1
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Results and Comparisions

A 10-fold cross-validation:
The data sheet is divided into 10 even subsets.
Each of them is once used as the test dataset and the other 9 as
training dataset.
The averages of models’ accuracies (proportion of correct predicted
fault types) are considered for models’ validity evaluation.

Normal Environment Noisy Environment
SVC-GA 0.95 0.95

SVC 0.9 0.85
ANN-GA 0.85 0.75

ANN 0.85 0.8
KNN 0.6 0.6

Decision Tree 0.6 0.5
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Conclusions

GA can significantly improve the performance of the classifiers.
SVM with Gaussian kernel function had the best accuracy in
correct fault diagnosis and an excellent robustness against noise.
SVM is superior to ANN in most of the cases.
For future research:
Testing the ability of other optimisation algorithms to improve
ANN, SVM and other classification methods is recommended.
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Thanks a Lot For Your Attention
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