OPTIMAL FEATURE SET AND MINIMAL TRAINING SIZE FOR PRONUNCIATION ADAPTATION IN TTS. Marie Tahon, Raheel Qader, Gwénolé Lecorvé and Damien Lolive $\begin{array}{c} \text{IRISA,} \\ \text{EXPRESSION TEAM, LANNION, FRANCE} \end{array}$ October 12, 2016 - Introduction - 2 Material and methodology - OPTIMAL FEATURE SET - MINIMAL TRAINING DATA SIZE - **5** Example - 6 Conclusions and perspectives - Introduction - 2 Material and methodology - 3 OPTIMAL FEATURE SET - 4 Minimal training data size - **6** Example - 6 CONCLUSIONS AND PERSPECTIVES ## Context: the ANR project SynPaFlex The project SynPaFlex aims at: - improving flexibility of TTS systems (especially for audiobooks), - generating high quality expressive speech. We want to adapt pronunciation and prosody according to the semantic context. \rightarrow focus on pronunciation adaptation. One of the main challenges when dealing with expressive speech is the lack of data (small-scaled corpora, no data at all, etc...) ### Introduction \Rightarrow How to reduce inconsistencies between phonemes as labeled in the speech corpus and phonemes generated by the phonetizer? The speech corpus must be a big database carefully segmented and labeled. It is too expensive to consider pronunciation variants, or a new speech database. ⇒ Is it possible to use small expressive pronunciation databases? #### Introduction Adaptation of the phonemes generated by a phonetizer to a specific pronunciation style \Rightarrow train a corpus-specific P2P model. - As a case study, the considered pronunciation is the one uttered in the speech corpus itself - To deploy this method to various cases, investigations are conducted on (i) the choice of optimal features, (ii) the minimal size of the pronunciation corpus to train reasonable adaptation models - Introduction - MATERIAL AND METHODOLOGY - 3 OPTIMAL FEATURE SET - 4 Minimal training data size - **6** Example - 6 CONCLUSIONS AND PERSPECTIVES ## Speech Corpus #### Overall description of the corpus: - Neutral female voice (16 kHz) - 7208 utterances, 196,190 phonemes - This corpus covers all French diphonemes and comprises most used words in the telecommunication field. - Managed under the Roots toolkit [Chevelu,2014] - Randomly split into a training set (70%) and a validation set (30%). - Training set: select and combine features in cross-validation conditions (7 folds) - Validation set: evaluate the resulting models in terms of PER and through perceptual tests. Distribution of the corpus according to training and validation set, training set is divided in 7 folds in cross-validation conditions. | Test 10% | Train 60% | Validation 30% | Fold 1 | |----------|-----------|----------------|--------| | Test 10% | Train 60% | Validation 30% | Fold 2 | #### A 52 feature set [Qader,2015; Tahon,2016]: - Canonical phonemes - Generated with Lia-Phon [Béchet, 2001] - Linguistic - Phonological - Articulatory - Prosodic (oracle) #### A 52 feature set [Qader,2015; Tahon,2016]: - Canonical phonemes - Linguistic - Word frequencies are extracted with Google ngrams - Lemma and POS are extracted with Synapse - Phonological - Articulatory - Prosodic (oracle) ### Linguistic features (18) Word ♦ Stem ♦ Lemma ♦ POS ♦ Stop word ♦ Word, stem, lemma freq. in French (common, normal, rare) ♦ Word, stem, lemma freq. in corpus ♦ Word freq. knowing previous word in French, in corpus ♦ Word freq. knowing next word in French in corpus ♦ Number of word occurence in corpus (numerical) ♦ Word position, reverse position in utterance (numerical) #### A 52 feature set [Qader,2015; Tahon,2016]: - Canonical phonemes - Linguistic - Phonological - Extracted using phonemes, syllable, pauses and word positions - Syllable structure using IPA information of its phonemes. - Articulatory - Prosodic (oracle) #### Phonological features (17) Canonical syllables ♦ Phoneme in syllable position ♦ Phoneme in word position (begin, middle, end) ♦ Syllable in word position ♦ Phoneme position and reverse position in syllable (numerical) ♦ Phoneme position and reverse position in word (numercial) ♦ Syllable position and reverse position in word (numercial) ♦ Word length in phoneme (numerical) ♦ Word length in syllable (numerical) ♦ Syllable short and long structure (CVC, CCVCC) ♦ Syllable type (open, closed) ♦ Phoneme in syllable part (onset, nucleus, coda) ♦ Pause per Syllable (low, normal, high) #### A 52 feature set [Qader,2015; Tahon,2016]: - Canonical phonemes - Linguistic - Phonological - Articulatory - IPA phoneme information - Prosodic (oracle) #### Articulatory features (9) Phoneme type (vowel, consonant) ♦ Phoneme aperture, shape, place and manner (open, close, front, central, undef, etc.) ♦ Phoneme is affricate, rounded, doubled or voiced ? (boolean) #### A 52 feature set [Qader,2015; Tahon,2016]: - Canonical phonemes - Linguistic - Phonological - Articulatory - Prosodic (oracle) - Extraction of energy (MFCC0), F0 and duration - F0 shape is based on a glissando value perceptually defined [d'Alessandro,1998] #### Prosodic features (7) Syllable Energy (low, normal, high) \blacklozenge Syllable and phoneme tone (from 1 to 5) \blacklozenge F_0 phoneme contour (decreasing, flat, increasing) ♦ Speech rate (low, normal, high) ♦ Distance to next and previous pause (from 1 to 3) - Introduction - 2 Material and methodology - OPTIMAL FEATURE SET - 4 Minimal training data size - 5 Example - 6 CONCLUSIONS AND PERSPECTIVES ## Feature selection protocol #### Three steps: - For each of the four feature groups: cross-validation (7 folds) forward feature selection without phoneme window - Feature combination of groups of selected features - Effect of phoneme window. #### **♦ IRISA** ### Selected features $\frac{Protocol:}{(7 \text{ folds}), \text{ without any phoneme window.}}$ Forward selection process based on PER criteria + voting process. #### Results: - No articulatory features selected - Most of prosodic features were selected - Word frequencies were not selected: only word and stem remain - Phoneme position in the utterance features were selected, but characteristics of syllables were not (nucleus, onset, VCV, CV, etc.) | Group of feature | # selec/all | Selected features | |-------------------|-------------|---| | Linguistic (L) | 2 / 18 | Word ♦ Stem | | Phonological (Ph) | 7 / 17 | Canonical syllables ♦ Syllable in word position ♦ Phoneme reverse position in syllable (numerical) ♦ Phoneme position and reverse position (numerical) ♦ Word length in phoneme (numerical) ♦ Pause per Syllable (low, normal, high) | | Articulatory (A) | 0 / 9 | - | | Prosodic (Pr) | 6 / 7 | Syllable Energy (low, normal, high) \blacklozenge Syllable and phoneme tone (from 1 to 5) \blacklozenge F_0 phoneme contour (decreasing, flat, increasing) \blacklozenge Speech rate (low, normal, high) \blacklozenge Distance to previous pause (from 1 to 3) | ## Feature groups combination <u>Protocol:</u> Models are trained on the training set (7 folds) and evaluated on the validation set. #### Results: - With only two apparently redundant features (word and its stem) a drop of 6.8 pp is obtained from the baseline. - \bullet With very few features (8/52), the combination of linguistic and prosodic groups leads to a significant drop of 7.7 pp. from baseline - The combination of the three groups (with a third of the initial set of feature) leads to the best PER with an improvement of 7.9 pp. from baseline - We found a small subset of 15 features which leads to a significant improvement in terms of PER | Baseline (no adaptat | 11.2 [0.0] | | |----------------------|------------|------------| | Canonical phoneme of | only (C) | 6.6 [-4.6] | | C + L | 2 | 4.4 [-6.8] | | C + Ph | 7 | 4.5 [-6.7] | | C + Pr | 6 | 4.8 [-6.4] | | C + L + Ph | 9 | 4.0 [-7.2] | | C + L + Pr | 8 | 3.5 [-7.7] | | C + Ph + Pr | 13 | 3.7 [-7.5] | | C + L + Ph + Pr | 15 | 3.3 [-7.9] | ## Perceptive tests: example | Nous sommes responsables de tout le monde [We are responsible for everyone] | | | | | | |---|-----------|---|---|-----|-------------| | Model | | | Phoneme sequence | HTS | Unit Selec. | | Baseline | n u s ɔ m | Э | вεsp̃sablə døtulø m̃də | | | | Adapted C | n u s ɔ m | _ | вεspэ̃sabl - døtulø mэ̃d - | | D | | Adapted CLPh | n u s ɔ m | _ | вεspэ̃sabl - døtulø mэ̃d - | | D | | Adapted CLPhPr | n u s ɔ m | - | вегрэ́зарl э døtul - mɔ́d - | | | | Realized | n u s ɔ m | - | к є s p ъ̃ s a b l ə d ø t u l - m ъ̃ d - | | | | La guerre devient
Model | un peu mo | | able [<i>War i</i>
Phoneme s | | bit less improbable | e]
HTS | Unit Selec. | |----------------------------|-----------|---------|----------------------------------|----------|---------------------|-----------|-------------| | Baseline | lадєв | ədøvjê | - ε̃ p ø | m w ε̃ - | е ркорарја | | lacksquare | | Adapted C | lадев | - døvjê | - ε̃ pø | mwε̃- | - ldadcad3 | | | | Adapted CLPh | lадев | - døvjê | - œ́ pø | mwε̃- | - ldadcad3 | D | | | Adapted CLPhPr | | | | | | D | | | Realized | | | | | gbropapl - | | lacksquare | ## Effect of phoneme window <u>Protocol:</u> Models are trained on the training set (7 folds) and evaluated on the validation set. Four symmetrical phoneme windows are tested; window are applied to current phoneme but also is associated features. #### Results: - The addition of one or two surrounding phonemes improves the PER (all the more so as feature set is small) - A seven phoneme window, W3, degrades the results (overfitting) - Windowing has a higher effect with prosodic features than linguistic or phonological features. - W2 + 15 features brings the best improvement from baseline (-8.5 pp) - Introduction - 2 Material and methodology - 3 Optimal feature set - MINIMAL TRAINING DATA SIZE - **5** Example - 6 CONCLUSIONS AND PERSPECTIVES ## Effect of the quantity of training material <u>Protocol:</u> Reduction of the training data by splitting the training set. Cross-validation with 7 folds to 100 folds. - Max size: 243.3 min of training data, 7 folds, 4321 utterances each - Min size: 40 s of training size, 100 folds, 12 utterances each - Validation: 120.2 min, 2161 utterances. ## Effect of the quantity of training material #### Results: - \bullet Small durations reach a PER improvement of 4.0 pp (W0-CLPrPh) \to small training sets allows fixing many errors. But STD is high, the choice of the training set is crucial. - If duration > 4.4 min, PER is almost linear with duration (in agreement with ASR result [Moore,2003]) | Training duration | Lin. Reg. | W0-C | W0-CLPrPh | W2-C | W2-CLPrPh | |-------------------|-------------|-------|-----------|-------|-----------| | > 0.7 min | Slope | -0.17 | -0.54 | -0.58 | -0.73 | | | Corr. coef. | 0.74 | 0.85 | 0.99 | 0.86 | | > 4.4 min | Slope | -0.04 | -0.34 | -0.62 | -0.48 | | | Corr. coef. | 0.96 | 1.00 | 0.99 | 0.99 | #### **♦ IRISA** ## Effect of the quantity of training material #### **Conclusion:** | Durations | < 1 min | 1-4 min | > 5 min | |-------------------------------------|-----------|----------------------------------|----------------------------| | Window effect | no | no | strong | | Feature effect | no | strong | small | | Linearity | no | no | yes | | Improvement from baseline (in PER)* | 4.0 pp | 6.6 pp | 8.5 pp | | Improvement and duration | - | $\times 6.6 \rightarrow -2.6$ pp | imes 10 ightarrow -0.5 pp | | Best configuration | W0-CLPrPh | CLPrPh | W2 | An ideal PER = 0, would be reached for $3 \cdot 10^8$ hours of speech !!!! ^{*:} for best configuration - Introduction - 2 Material and methodology - 3 Optimal feature set - 4 Minimal training data size - **5** Example - 6 CONCLUSIONS AND PERSPECTIVES ## Pronunciation adaptation: example Example of pronunciation adaptations with different windows, features and training size. The input text is *Dans la montagne, les couleurs sont exceptionnelles*. "In the mountains, colors are remarkable" | Win. | Features | dur(min) | Phoneme sequence | |--------|----------|----------|---| | Realiz | zed | | dãlamõta nj- lekulœʁsɔ̃ t ɛksɛpsj o nɛl - | | Cano | nical | | dālamīta p-ə lekulœʁsɔ̃ - ɛksɛpsj ɔ nɛl ə | | W2 | CLPrPh | 243.3 | dãlamõta nj-lekulœʁsɔ̃zɛksepsjɔnɛl- | | W2 | C | 243.3 | dãlamõta nj-lekulœʁsɔ̃t eksɛpsj o nɛl- | | W0 | C | 243.3 | dālamīta nj- lekulœʁsɔ̃ - ɛksɛpsj ɔ nɛl - | | W2 | CLPrPh | 4.4 | dalamõta njə lekulæssõ t eksepsjo nel - | | W2 | C | 4.4 | dãlamõta nj-lekulœʁsɔ̃tɛksɛpsjonɛl- | | W0 | C | 4.4 | dālamīta nj- lekulœʁsɔ̃ - ɛksɛpsj o nɛl - | | W2 | CLPrPh | 0.7 | dālamīta g-e lekulæssī - Eksepsj o nel - | | W2 | C | 0.7 | dālamīta в lekulæвsī t εкsεpsj o n εl - | | W0 | С | 0.7 | dālamīta в lekulœвsī - εкsεрsj э n εl - | - LIAISONS: W0 is not able to model French liaison: $/s~\tilde{\mathfrak{z}}~t~\epsilon/$, but W2 do; not always the correct one: /z/ instead of /t/ - ALPHABET: with 40 s of training data, models are not able to lable correctly the symbol /n: labels /n j/ are not found but /n/s/, or /n/g/ - SCHWA: in the realized sequence, schwa is not pronunced, all models but WO-CLPhPr delete the canonical symbol /ə/. - Pronunciation: the substitution $/\text{o}/\rightarrow/\text{o}/$ is better modeled with W2 - Introduction - 2 Material and methodology - 3 Optimal feature set - MINIMAL TRAINING DATA SIZE - 5 Example - 6 Conclusions and perspectives #### **♦ IRISA** #### Conclusion #### Objective of the presented work: - Adaptation of phonemes generated by a phonetizer to the phonemes as labeled in the speech corpus in order to reduce inconsistencies. - Investigation of an optimal feature set and a minimal training size. #### Proposed solution: - Train a CRF pronunciation model with linguistic, articulatory, phonological and prosodic features - Reduce feature set dimension in cross-validation conditions. - Reduce the quantity of training data for modeling pronunciations. #### Main results: Reduction of the initial feature set from 52 to 15 features for end-users applications: the more data, the better. - Corpus-specific adaptation method brings an improvement of 8.5 pp. in terms of PER (with W2-CLPrPh configuration) - Over 5 min of training material, the addition of new data has a high cost but a weak improvement in accuracy ($\times 10 \rightarrow -0.5$ pp only). An ideal PER=0, would be reached for $3 \cdot 10^8$ hours of training data. \Rightarrow For exploratory researches on pronunciation, 5 minutes seem enough, ## Perspectives The presented pronunciation adaptation method (i) improves TTS quality, (ii) brings interesting perspectives in the use of small-scaled corpora for expressive TTS. #### Further works: - Phoneme adaptation to expressive speech (speaking style, emotions, direct/narrative style, regional accent, etc.) - Introduction of n-best predicted phonemes into lattices for synthesis applications. Thank you for your attention. Any questions?