

Simple neural representations of speech for voice activity detection and speaker tracking in noisy archives

David Doukhan and Jean Carrive - {ddoukhan, jcarrive}@ina.fr French National Institute of Audiovisual – http://www.ina.fr 4th International Conference on Statistical Language and Speech Processing - SLSP 2016

VAD and Speaker Tracking

Voice Activity Detection: prerequisite to speech analysis Speaker Tracking: infer which portions of a recording correspond to a known speaker

Goals in an archiving workflow

Indexation Enhanced Media Speech time count

Limitations

Temporal resolution Noise management Dependent on the recording conditions

Material: Rivonia Trial (1963-1964)

Dictabelt Recordings Floppy vinyl cylinders 30 minute recordings Digitized using Henri Chamoux's Archeophone Medium-specific timbral properties **Digitization artifacts** Omni directional microphone Noise Small Speech turns Speech superposition

ina

Models adapted to this medium should be built!

D. Doukhan & J.Carrive - Simple neural representations of speech for voice activity detection and speaker tracking in noisy archives

VAD and Speaker tracking algorithm

- 1. Feature extraction: spectrum power (FFT), mel-frequency cepstrum (MFC) or Mel-frequency cepstral coefficients (MFCC)
- 2. Normalization: Zero Component Analysis (ZCA) whitening
- 3. Neural Space Projection: 1 layer convolutional neural network, with RELU activations, trained with K-Means (unsupervised)
- 4. Frame concatenation: frame context management
- 5. Probabilistic support vector machine (SVM) classification
- 6. Post-processing: Viterbi decoding of SVM output

Steps 2 and 3 inspired by

Coates, A., Lee, H., & Ng, A. Y. (2010). An analysis of single-layer networks in unsupervised feature learning. Ann Arbor, 1001(48109), 2.

Evaluation Corpus

2 recordings2 speakers per recording1 minute of annotated speech per speaker80 seconds of non speech per recording

Evaluation Protocol

3 frame-level features (spectrum, MFC, MFCC) Training set length: 5, 10 and 15 seconds Raw features versus neural representations (8, 16, 32, 64, 96, 128) Neighborhood context: +- 0, 5, 10, 15, 20 Evaluation Metric: Mean Recall

Voice Activity Detection Evaluation

ina

D. Doukhan & J.Carrive - Simple neural representations of speech for voice activity detection and speaker tracking in noisy archives

VAD training set size impact

7

Voice Activity Detection system benchmark

ina

Mean Recall

D. Doukhan & J.Carrive – Simple neural representations of speech for voice activity detection and speaker tracking in noisy archives

Speaker Tracking evaluation

ina

D. Doukhan & J.Carrive – Simple neural representations of speech for voice activity detection and speaker tracking in noisy archives

Speaker tracking training set size impact

Conclusion & Future Work

Models fitted to the recording medium were proposed

Neural representation of speech, obtained through unsupervised procedure, allowed to obtain better performances:

+0,49 Mean recall on VAD

+2,2 Mean Recall on Speaker Tracking

Future Work

Investigate the use of larger training sets Evaluate this approach on clean speech Use neural features for unsupervised speech turn structuration (diarisation) Investigate deeper architectures

