Merging of native and non-native speech for low-resource accented ASR

Sarah Samson Juan¹, Laurent Besacier², Benjamin Lecouteux² and Tien-Ping Tan³

 ¹Faculty of Computer Science and Information Technology Universiti Malaysia Sarawak, Sarawak, Malaysia
²Grenoble Informatics Laboratory (LIG), Univ. Grenoble-Alpes, Grenoble, France ³School of Computer Science, Universiti Sains Malaysia, Penang, Malaysia

SLSP 2015, Budapest

Merging of native and non-native speech for low-resource accented ASR $\cap{L-Introduction}$

Outline

Introduction

Acoustic Model Merging Approach

Experimental Setup

Performance of Non-native ASR

Introduction

- Performance of non-native automatic speech recognition (ASR) is poor when few (or no) non-native speech is available for training / adaptation.
- Many approaches have been suggested for handling accented-speech in ASR:
 - acoustic model merging ((Morgan, 2004), (Bouselmi, Fohr, and Haton, 2005), (Tan and Besacier, 2007), (Tan, Besacier, and Lecouteux, 2014)),
 - applying maximum likelihood linear regression (MLLR) for adapting models to each non-native speaker (Huang et al., 2000), or
 - adapting lexicon ((Arslan and Hansen, 1996), (Goronzy, 2002))

Introduction contd.

- Multi-accent approach for accented speech:
 - Subspace Gaussian Mixture Model (Mohan, Ghalehjegh, and Rose, 2012) and Deep Neural Network (Huang et al., 2014) apply pooling data approach
- Can we finely merge unbalanced corpora (large native data < -> small non-native data) for achieving an optimal acoustic model?

Merging of native and non-native speech for low-resource accented ASR Acoustic Model Merging Approach

Outline

Introduction

Acoustic Model Merging Approach

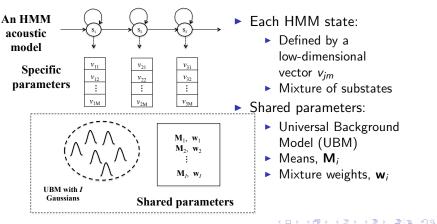
Experimental Setup

Performance of Non-native ASR

Subspace Gaussian Mixture Model

General

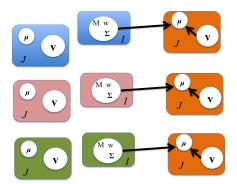
Subspace Gaussian Mixture Model (SGMM) (Povey et al., 2010):



6/18

Merging of native and non-native speech for low-resource accented ASR Acoustic Model Merging Approach

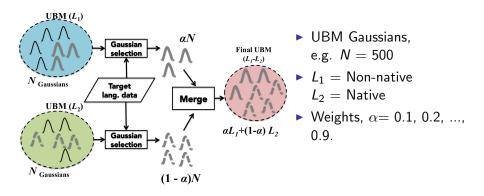
Multi-accent SGMM



Using SGMM:

- Transfer shared parameters from source to target system
- Applied by (Imseng et al., 2014) and (Lu, Ghoshal, and Renals, 2014) - cross-lingual acoustic model for low-resource systems

Language-weighting strategy for multi-accent SGMM



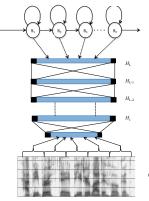
◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ●□□ ◇◇◇

Merging of native and non-native speech for low-resource accented ASR Acoustic Model Merging Approach

Deep Neural Networks

General

Deep Neural Networks (DNN) (Hinton et al., 2012):



An HMM acoustic model

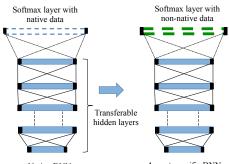
Hidden layers

Input

Observation

- Alternative to HMM/GMM systems
- Feedforward neural network
- Intialization of DNN weights:
 - Random
 - Pretraining Restrictive Boltzmann Machines (RBM) (Hinton, 2010)
- Adjust weights Stochastic Gradient Descent

Accent-specific top layer DNN



Native DNN

Accent-specific DNN

- 1. Train DNN on Native / Non-native data:
- 2. Remove last layer (softmax layer) from DNN with native speech
- 3. Fine-tune hidden layers on non-native training data

Merging of native and non-native speech for low-resource accented ASR $\cap{Lexperimental Setup}$

Outline

Introduction

Acoustic Model Merging Approach

Experimental Setup

Performance of Non-native ASR

Experimental setup

- Non-native Malaysian English (Tan, Besacier, and Lecouteux, 2014):
 - Train: 2h transcribed; 9h untranscribed (UBM 11h)
 - Test: 4h
- "Native" TED English¹ (TED-LIUM) (Rousseau, Deléglise, and Estève, 2012)
 - Train: 118h
 - Test: 4h
- Toolkit: Kaldi
- Systems:
 - HMM/GMM
 - ► HMM/SGMM :
 - UBM 500
 - Merging: $\alpha = 0.1, ..., 0.9$
 - substates 800 to 8750
 - HMM/DNN : 6 hidden layers with 1024 units

 Merging of native and non-native speech for low-resource accented ASR \Box Performance of Non-native ASR

Outline

Introduction

Acoustic Model Merging Approach

Experimental Setup

Performance of Non-native ASR

Baseline results (WER %)

English ASR results for native and non-native speech

- no speaker adaptation (fMLLR) at this stage

Train	Test	
Iraili	Native (4h)	Non-native (4h)
Native 118h	30.55 (GMM) 28.05 (SGMM) 19.10 (DNN)	
Non-native 2h		

Baseline results (WER %)

English ASR results for native and non-native speech - no speaker adaptation (fMLLR) at this stage

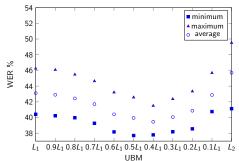
Train	Test		
IIdili	Native (4h)	Non-native (4h)	
Native 118h	30.55 (GMM) 28.05 (SGMM) 19.10 (DNN)	57.09 (GMM) 45.84 (SGMM) 40.70 (DNN)	
Non-native 2h			

Baseline results (WER %)

English ASR results for native and non-native speech - no speaker adaptation (fMLLR) at this stage

Train	Test		
IIdili	Native (4h)	Non-native (4h)	
Native 118h	30.55 (GMM)	57.09 (GMM)	
	28.05 (SGMM)	45.84 (SGMM)	
	19.10 (DNN)	40.70 (DNN)	
Non-native 2h		41.47 (GMM)	
		40.41 (SGMM)	
		32.52 (DNN)	

Multi-accent SGMM results



 L_1 : Malaysian English, L_2 : TED English

- 4h test data
 - Best WER: 37.7% -Baseline: 40.4%

 - Increase substates degrades results

Accent-specific top layer for DNN

DNN with accent-specific top	WER (%)
layer	
Baseline - standard DNN	32.52
No speaker adaptation	24.89
Speaker adaptation	21.48

Merging of native and non-native speech for low-resource accented ASR $\cap{L-Conclusions}$

Outline

Introduction

Acoustic Model Merging Approach

Experimental Setup

Performance of Non-native ASR

- Proposed two approaches for optimal merging of native and non-native data in order to improve accented ASR with limited training data:
 - 1. Language weighting strategy for multi-accent compact SGMM acoustic models used language weights to control the number of UBM Gaussians.
 - 2. Fine-tuning hidden layers of native DNN on the non-native training data
- Observed improvements on non-native ASR performance:
 - Relative improvement: 15% for SGMM (multi-accent UBM500 α = 0.5) and 34% for DNN (accent-specific with speaker adaptation).

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖■ 釣요@

References I

Arslan, M. J. and J. L. Hansen (1996). "A Study of the Temporal Features and Frequency Characteristics in American English Foreign Accent". In: Journal of the Acoustic Society. Bouselmi, G., D. Fohr, and J. P. Haton (2005). "Fully Automated Non-native Speech Recognition using Confusion-based Acoustic Model Intergration". In: Proceedings of Eurospeech. Lisboa, pp. 1369–1372. Goronzy, S. (2002). "Robust Adaptation to Non-native Accents in Automatic Speech Recognition". In: Springer. Hinton, Geoffrey et al. (2012). "Deep Neural Networks for Acoustic Modeling in Speech recognition". In: IEEE Signal Processing Magazine 29.6, pp. 82–97. Hinton, Geoffrey E. (2010). A Practical Guide to Training Restricted Boltzmann Machines. UTML TR 2010-003. Dept. Computer Science, University of Toronto.

References II

Huang, C. et al. (2000). "Accent Modeling based on Pronunciation Dictionary Adaptation for Large Vocabulary Mandarin Speech Recognition". In: Proceedings of ICLSP. Vol. 2, pp. 818–821. Huang, Yan et al. (2014). "Multi-accent Deep Neural Network Acoustic Model with Accent-specific Top Layer using the KLD-regularized Model Adaptation". In: Proceedings of INTERSPEECH. Imseng, David et al. (2014). "Using Out-of-language Data to Improve Under-resourced Speech Recognizer". In: Speech Communication 56.0, pp. 142–151. Lu, Liang, Arnab Ghoshal, and Steve Renals (2014). "Cross-lingual Subspace Gaussian Mixture Models for Low-resource Speech Recognition". In: IEEE/ACM Transactions on Audio, Speech and Language Processing. Vol. 22, pp. 17-27.

References III

Mohan, Aachan, Sina Hamidi Ghalehjegh, and Richard C. Rose (2012). "Dealing with Acoustic Mismatch for Training Multlingual Subspace Gaussian Mixture Models for Speech Recognition". In: *Proceedings of ICASSP*. Kyoto: IEEE, pp. 4893–4896.

- Morgan, J. J. (2004). "Making a Speech Recognizer Tolerate Non-native Speech through Gaussian Mixture Merging". In: *Proceedings of ICALL'04*. Venice.
- Povey, Daniel et al. (2010). "Subspace Gaussian Mixture Models for Speech Recognition". In: Proceedings of ICASSP.
- Rousseau, Anthony, Paul Deléglise, and Yannick Estève (2012). "TED-LIUM: An Automatic Speech Recognition Dedicated Corpus". In: Proceedings of LREC. European Language Resources Association (ELRA), pp. 125–129.

References IV

 Tan, Tien-Ping and Laurent Besacier (2007). "Acoustic Model Interpolation for Non-native Speech Recognition". In: *Proceedings of ICASSP.* Tan, Tien-Ping, Laurent Besacier, and Benjamin Lecouteux

(2014). "Acoustic Model Merging using Acoustic Models from Multilingual Speakers for Automatic Speech Recognition". In: *Proceedings of International Conference on Asian Language Processing (IALP)*.