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Introduction

I Performance of non-native automatic speech recognition
(ASR) is poor when few (or no) non-native speech is available
for training / adaptation.

I Many approaches have been suggested for handling
accented-speech in ASR:

I acoustic model merging ((Morgan, 2004), (Bouselmi, Fohr,
and Haton, 2005), (Tan and Besacier, 2007), (Tan, Besacier,
and Lecouteux, 2014)),

I applying maximum likelihood linear regression (MLLR) for
adapting models to each non-native speaker (Huang et al.,
2000), or

I adapting lexicon ((Arslan and Hansen, 1996), (Goronzy, 2002))
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Introduction contd.

I Multi-accent approach for accented speech:
I Subspace Gaussian Mixture Model (Mohan, Ghalehjegh, and

Rose, 2012) and Deep Neural Network (Huang et al., 2014) -
apply pooling data approach

I Can we finely merge unbalanced corpora (large native
data < − > small non-native data) for achieving an
optimal acoustic model?
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Acoustic Model Merging Approach

Subspace Gaussian Mixture Model

General
Subspace Gaussian Mixture Model (SGMM) (Povey et al., 2010):
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I Each HMM state:
I Defined by a

low-dimensional
vector vjm

I Mixture of substates

I Shared parameters:
I Universal Background

Model (UBM)
I Means, Mi

I Mixture weights, wi
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Acoustic Model Merging Approach

Multi-accent SGMM

Using SGMM:

I Transfer shared parameters
from source to target system

I Applied by (Imseng et al.,
2014) and (Lu, Ghoshal, and
Renals, 2014) - cross-lingual
acoustic model for
low-resource systems
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Acoustic Model Merging Approach

Language-weighting strategy for multi-accent SGMM

I UBM Gaussians,
e.g. N = 500

I L1 = Non-native
L2 = Native

I Weights, α= 0.1, 0.2, ...,
0.9.
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Acoustic Model Merging Approach

Deep Neural Networks

General
Deep Neural Networks (DNN) (Hinton et al., 2012):
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I Alternative to HMM/GMM
systems

I Feedforward neural network
I Intialization of DNN weights:

I Random
I Pretraining - Restrictive

Boltzmann Machines (RBM)
(Hinton, 2010)

I Adjust weights - Stochastic
Gradient Descent
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Accent-specific top layer DNN

Softmax layer with 
non-native data 

Accent-specific DNN Native DNN 

Transferable 
hidden layers 

Softmax layer with 
native data 1. Train DNN on Native /

Non-native data:

2. Remove last layer (softmax
layer) from DNN with native
speech

3. Fine-tune hidden layers on
non-native training data
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Experimental setup
I Non-native - Malaysian English (Tan, Besacier, and

Lecouteux, 2014):
I Train: 2h transcribed; 9h untranscribed (UBM - 11h)
I Test: 4h

I “Native” - TED English1 (TED-LIUM) (Rousseau, Deléglise,
and Estève, 2012)

I Train: 118h
I Test: 4h

I Toolkit: Kaldi
I Systems:

I HMM/GMM
I HMM/SGMM :

I UBM 500
I Merging: α = 0.1, ..., 0.9
I substates 800 to 8750

I HMM/DNN : 6 hidden layers with 1024 units
1Even if non-native speakers exist in the corpus
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Performance of Non-native ASR

Baseline results (WER %)

English ASR results for native and non-native speech
- no speaker adaptation (fMLLR) at this stage

Test
Train

Native (4h) Non-native (4h)

Native
118h

30.55 (GMM)
28.05 (SGMM)
19.10 (DNN)

57.09 (GMM)
45.84 (SGMM)
40.70 (DNN)

Non-native
2h

41.47 (GMM)
40.41 (SGMM)
32.52 (DNN)
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Performance of Non-native ASR

Multi-accent SGMM results

L1: Malaysian English, L2: TED English
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I 4h test data

I Best WER: 37.7% -
Baseline: 40.4%

I α = 0.5 (250 Gaussians
from L1/L2)

I Increase substates degrades
results
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Performance of Non-native ASR

Accent-specific top layer for DNN

DNN with accent-specific top
layer

WER (%)

Baseline - standard DNN 32.52

No speaker adaptation 24.89
Speaker adaptation 21.48
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Conclusions

I Proposed two approaches for optimal merging of native and non-native

data in order to improve accented ASR with limited training data:

1. Language weighting strategy for multi-accent compact SGMM
acoustic models - used language weights to control the number
of UBM Gaussians.

2. Fine-tuning hidden layers of native DNN on the non-native
training data

I Observed improvements on non-native ASR performance:

I Relative improvement: 15% for SGMM (multi-accent UBM500
- α = 0.5) and 34% for DNN (accent-specific with speaker
adaptation).
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