3rd International Conference on Statistical Language and Speech Processing, SLSP 2015

Probabilistic Speaker Pronunciation Adaptation for Spontaneous Speech Synthesis Using Linguistic Features

<u>Raheel Qader</u>¹, Gwénolé Lecorvé¹, Damien Lolive¹, Pascale Sébillot² ¹ IRISA/Université de Rennes 1 ² IRISA/INSA de Rennes

26/11/2015

Introduction

- Many pronunciation variations occur in spontaneous speech
- Degradation in performance of speech applications
 - Automatic Speech Recognition (ASR)
 - Low accuracy
 - Text To Speech (TTS)
 - Lack of expressivity
 - Flat style
- Example:
 - went \rightarrow [wɛnt] , [wɛn] , [w \rightarrow nt]
 - I want to go \rightarrow [ai won D go σ]

Introduction

How to produce spontaneous pronunciation for TTS?

- Adapting standard pronunciations to a spontaneous style
 - By predicting addition, deletion and substitution of phonemes
 - Using linguistic features and Conditional Random Fields (CRFs)

Outline

- State of the art
- Corpus
- Method overview
- Feature selection
- Experiments
- Conclusion and future work

State of the art

- Early work: phonological rules [Tajchman et al., 1995]
- Recent work [Vazirnezhad et al., 2009; Prahallad et al., 2006; Karanasou et al., 2013]
 - Machine learning: decision trees, HMMs, neural networks, random forests, CRFs
- Features types
 - ACOUSTIC (F0, energy, duration) [Bates and Ostendorf, 2002]
 - Linguistic (syllable stress, part-of-speech, word length)

[Bell et al., 2009 ; Vazirnezhad et al., 2009]

Corpus

- Buckeye conversational English corpus (50%)
 - 20 speakers & 20 hours of recording (randomly selected)
 - Partition: 60% training set, 20% development set, 20% test set
- Existing features
 - Speech signal + orthographic transcription
 - 2 phonemic transcriptions
 - Canonical form

Realized forn

Linguistic features

- Utterances

- Utterance position
- Words
 - Frequency
 - Part of speech (POS)
 - Length
 - Occurrence count
 - Stems
 - Stop words
- Syllables
 - Syllable position
 - Syllable type
 - Syllable stress
- Phonemes, graphemes, etc.

Method overview

• Pronunciation adaptation performed on each speaker independently

Method overview

Feature selection

- Why?
 - Having too many features
 - Results in overfitting the data
 - Increase the time needed for training process
 - Some features might be irrelevant and redundant
 - Limitations in computational resources
 - Limited training data
- Proposed solution: reduce the number of features

Feature selection

Feature selection

Feature	votes	
Canonical phoneme	40	
Word	40	
Is a stop word (true/false)	24	
Syllable lexical stress	24	Selected
Syllable part (onset/nucleus/coda)	24	features
Word frequency in English	22	
Reverse phoneme position in syllable	22	
Phoneme position in syllable	20	
Syllable location (first/middle/last)	20	
Stem frequency in the interview	19	
Word frequency in the interview	18	
Syllable type (open/close)	18	
POS	17	
Number of syllables of the word	17	
Stem frequency in English	16	Domoved
Grapheme	16	features
Word length	13	reatures
Reverse utterance position	4	
Utterance position	3	
Word position	2	
Reverse word position	0	
Word occurrence count in interview	0	/

+ word boundary feature for utterances

Window size selection

• PER and WER according to window size (neighborhood)

Backend experiments

• Parameters

- Features: Canonical phoneme, best features
- Window size W=0 (no window), W=±2
- Unit size: word, utterance
- Feature configuration: unigram, uni+bigram
- Final experiments on test sets
 - Separate parameters
 - Combined parameters

Backend experiments

solated word	PER (%)
Baseline	30.5
Canonical phoneme	30.4 [-0.1]
+ window	23.8 [-6.7]
+ linguistic features + window	23.6 [-6.9]

 Increasing window size leads to significant improvement

<u>Utterance</u>

Baseline	30.3
+ linguistic features + window	23.4 [-6.9]

 Including cross-word information provides minimal improvement

<u>Unigram vs Uni+bigram</u> (using linguistic features + window)

Isolated word	Unigram	23.6
	Uni+bigram	24.2 🗡
Utterance	Unigram	23.4
	Uni+bigram	24.4 🗡

Uni+bigram configuration
Increases the error rate

Example

Pronunciation samples predicted by different configurations for the phrase "**concentrated in Ohio**"

Reference	/kansn_tiei_id i řovha v/	
Baseline	/kans n tiei tn ovh aiou /	[7 errors]
Adapted (can. ph. only)	/łansan_jeirid en mhs ou/	[10 errors]
+ ling. feat.	/kans n tier tn d i n ovh arov /	[7 errors]
+ window	/kansn n_ sei t id i n ouh aiou /	[6 errors]
+ ling. feat. + window	/kansn n_ jei r id i n ovh aiov /	[6 errors]

• Evaluation of spontaneous pronunciations is a difficult task!

Conclusion

- Pronunciation adaptation:
 - Probabilistic approach
 - Speaker independent
 - Linguistic features
- Considerable improvement:
 - When adding context information
- Extra improvement:
 - Adding linguistic features
 - Using Utterances
- Feature selection process is necessary

Future work

• Articulatory and signal features

• N-best hypotheses

• Perceptual tests

