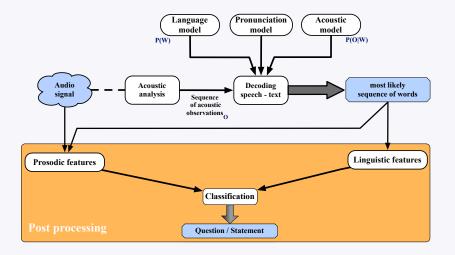
Combining lexical and prosodic features for automatic detection of sentence modality in French

Luiza Orosanu, Denis Jouvet

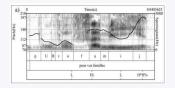
INRIA-Loria, Nancy, France Multispeech Team


Context and approach

- Prosodic and linguistic features
- 3 Experiments
- ④ Conclusions and future work

Context

Objective : state from the automatic transcription if the sentence


is a question or a statement

Approach

• prosodic classifier : uses the intonation

 \rightarrow sentences perceived as questions through the intonation

- linguistic classifier : uses the linguistic information
 - ightarrow sentences perceived as questions through the interrogative forms
 - * qu'est ce qu'on doit comprendre ?

 $(\rightarrow$ what should we understand?)

* est ce que vous souhaitez une confrontation ?

 $(\rightarrow do you want a confrontation?)$

• combined classifier : uses both types of information

• evaluate classifier on manual transcriptions \rightarrow ideal conditions - 0% word error rate

• evaluate classifier on automatic transcriptions \rightarrow real conditions - 26% word error rate

Context and approach

2 Prosodic and linguistic features

3 Experiments

4 Conclusions and future work

- generally, a question has a final rising pitch
- we compute 10 prosodic features that take into account
 - * the duration
 - * the energy
 - * the pitch

of the last prosodic group of the sentence

ightarrow the F0 and energy values are computed every 10ms using the ETSI/AURORA acoustic analysis

Features vector

class	{0=statement; 1=question}				
Ň	VNDurNorm	= the duration of the last syllable (normalized)			
	VNLogENorm	 the logarithm of the energy of the last syllable (nor- malized) 			
Features	VNF0Delta	 the F0 difference between the last syllable and the first syllable 			
	VNF0Slope	= the F0 slope on the last syllable			
Prosodic	VNF0SlopeT2	= VNF0Slope * VNDurNorm ²			
Pro	globalSlopeSlope	= the F0 slope on the longest ending F0 slope			
	globalSlopeLength	= the length of the longest ending F0 slope			
	globalSlopeDelta	= the F0 difference between the beginning and the end of the longest ending F0 slope			
	globalSlopeSlopeT2	= globalSlopeSlope * globalSlopeLength ²			
	lastF0Level	= the last F0 level (normalized by speaker)			

Linguistic features (#3)

• iP: the interrogative patterns

 \rightarrow indicate the presence or absence of an interrogative pattern in a phrase

- * quel (\rightarrow which, m)
- * quelle (\rightarrow which, f)
- * quels (\rightarrow which, m, pl)
- * quelles (\rightarrow which, f, pl)
- * comment (\rightarrow how)
- * combien (\rightarrow how much)

- * pourquoi (\rightarrow why)
- * est ce que (ightarrow *is/do* ...)
- * est ce qu' (\rightarrow is/do ...)
- * qu' est ce (\rightarrow what ...)
- * qu' est ce que (\rightarrow what ...)
- * qu' est ce qu' (\rightarrow what ...)

Linguistic features (#3)

• the probability of the sentence being a question

 \ast with respect to two reference language models

$$\mathsf{LLR}(\mathsf{sentence}) = \mathsf{Log}\left(\frac{\mathsf{P}(\mathsf{sentence}|\mathsf{LM}\text{-}\mathsf{question})}{\mathsf{P}(\mathsf{sentence}|\mathsf{LM}\text{-}\mathsf{statement})}\right)$$

* LLR \geq 0 \rightarrow likely to be a question * LLR < 0 \rightarrow likely to be a statement

lexLLR	we apply the lexical language models on the sequence of words
synLLR	we apply the syntactic language models on the sequence of POS tags

Combined linguistic-prosodic features (3L-10P)

Features vector

class	{0=statement; 1=question}				
	lexLLR	= the lexical log-likelihood ratio			
3L	synLLR	= the syntactic log-likelihood ratio			
	iP	= presence or absence of interrogative pattern			
	VNDurNorm	= the duration of the last syllable (normalized)			
	VNLogENorm	 the logarithm of the energy of the last syllable (nor- malized) 			
	VNF0Delta	 the F0 difference between the last syllable and the first syllable 			
10P	VNF0Slope	= the F0 slope on the last syllable			
	VNF0SlopeT2	= VNF0Slope * VNDurNorm ²			
	globalSlopeSlope	= the F0 slope on the longest ending F0 slope			
	globalSlopeLength	= the length of the longest ending F0 slope			
	globalSlopeDelta	= the F0 difference between the beginning and the end of the longest ending F0 slope			
	globalSlopeSlopeT2	= globalSlopeSlope * globalSlopeLength ²			
	lastF0Level	= the last F0 level (normalized by speaker)			

Context and approach

Prosodic and linguistic features

3 Experiments

- Setups for experiments
- Results
- 4 Conclusions and future work

Context and approach

- Prosodic and linguistic features
- 3 Experiments
 - Setups for experiments
 - Results
- 4 Conclusions and future work

Data for LM training

Textual corpus GigaWord

- extraction of statements : sentences ending with a '.' [#16M]
- extraction of questions : sentences ending with a '?' [#89K]

word sequences					
question statement	à quel moment le raid a décidé d'intervenir? nous sommes ensemble pour 60 minutes.				
	\downarrow				

the lexical language models of questions and statements

part-of-speech (POS) sequence					
question PRP PRO: REL NOM DET: ART NOM VER: pres VER: pper PRP VER: infi					
statement	statement PRO: PER VER: pres ADV PRP NUM NOM				
	↓ ↓				

the syntactic language models of questions and statements

Data for training and evaluating the classifiers

- Audio corpus: Ester, Etape, Epac
 - * training set : 300h of speech (manually transcribed)
 - * evaluation set : 22h of speech (manually transcribed)
 - Ester&Epac: French broadcast news, collected from radio channels (prepared speech, plus interviews)
 - Etape: debates collected from various French radio and TV channels (spontaneous speech)
- Data sets of questions and statements

 \rightarrow sentences ending with a '?', respectively with a '.'

	#questions	#affirmations
training	10.0K	10.0K
evaluation	0.8K	7.0K

Question / Statement classification

• Classifier: the J48 decision tree (WEKA software)

• Settings

- * features extracted from manual transcriptions (0% WER)
- * features extracted from automatic transcriptions (26% WER)

Performance

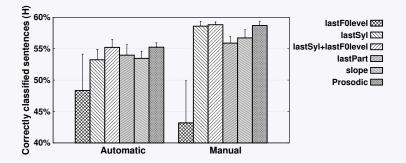
$$\frac{1}{H} = \frac{1}{2} * \left(\frac{1}{\text{ccQuestions}} + \frac{1}{\text{ccStatements}} \right)$$

ccQuestions = percentage of correctly classified questions ccStatements = percentage of correctly classified statements

Context and approach

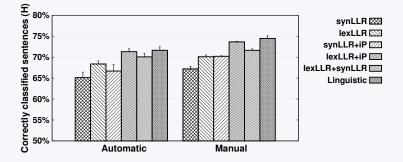
Prosodic and linguistic features

3 Experiments


- Setups for experiments
- Results

Results on prosodic features

Evaluate different combinations of prosodic features


- * the last F0 level (lastF0level)
- * the 5 features computed over the last syllable (lastSyl)
- * the 5 features computed over the last syllable + the last F0 level (lastSyl+lastF0level)
- * the 5 features computed over the ending part of the utterance (lastPart)
- * the 6 features related to slope measurements (slope)
- * all 10 features (Prosodic)

Results on linguistic features

Evaluate different combinations of linguistic features

- * the syntactic log-likelihood ratio (synLLR)
- * the lexical log-likelihood ratio (lexLLR)
- * the syntactic log-likelihood ratio + the presence of interrogative patterns (synLLR+iP)
- * the lexical log-likelihood ratio + the presence of interrogative patterns (lexLLR+iP)
- * the lexical log-likelihood ratio + the syntactic log-likelihood ratio (lexLLR+synLLR)
- * all 3 features (Linguistic)

Results on prosodic, linguistic and combined features

Percentage of o	correctly cla	ssified sentences	(H)
-----------------	---------------	-------------------	-----

Transcripts	Prosodic	Linguistic	Combined
automatic	55.24%	71.64%	72.21%
manual	58.69%	74.47%	74.26%

- ightarrow linguistic classifier outperforms prosodic classifier
- \rightarrow combined classifier outperforms linguistic classifier on automatic transcriptions
- \rightarrow linguistic classifier: 3% alsolute difference between manual and automatic transcriptions
- \rightarrow combined classifier: 2% alsolute difference between manual and automatic transcriptions

Best results with combined features

Confusion matrix between questions and statements obtained on **automatic transcriptions**

	number	classified as question	classified as statement	
question	831	627	204	
statement	7005	1958	5047	

ccQuestions=75.45%

ccStatements=72.05%

H=73.71%

Combine the predictions of different classifiers

- use 5 different classifiers
 - * logistic regression
 - * J48 decision tree
 - * JRip decision rules
 - * sequential minimal optimization algorithm
 - * multilayer perceptron
- each classifier makes a class prediction (question / statement)
- the final decision is made by a majority vote
 - * if at least 3 classifier assign the utterance to class "question"
 - \rightarrow utterance assigned to class "question"

Combine the predictions of different classifiers

Average performance obtained with all 5 classifiers and with their combination (by majority vote)

	LR	J48	JRip	SMO	MP	combination
Automatic	72.04	72.21	72.81	69.56	72.07	72.66
Manual	73.34	74.26	74.12	72.09	74.33	74.91

- Context and approach
- Prosodic and linguistic features
- 3 Experiments
- 4 Conclusions and future work

Conclusions

- * the prosodic classifier gives poor classification results
- the linguistic classifier provides by far better results (72% on ASR transcripts, 74% on manual transcripts)
- * the combination of prosodic and linguistic features provides a slight improvement when applied on automatic transcriptions
- * all 13 features are useful in detecting questions and statements
- Investigate further
 - * the use of confidence measures inside the classifier

Thank you for your attention !

Confusion matrix between questions and statements

	number	classified as	classified as	
		question	statement	
question	831	627	204	
statement	7005	1958	5047	

ccQuestions=75.45% ccStatements=72.05% H=73.71%

• Precision and recall on questions

$$\begin{array}{l} Q precision = \frac{627}{627 + 1958} = 24.26\% \\ Q recall = \frac{627}{627 + 204} = 75.45\% \end{array} \Rightarrow Q fmeasure = 36.72\% \end{array}$$

• Precision and recall on statements

$$\begin{array}{l} \text{Sprecision} = \frac{5047}{5047+204} = 96.12\% \\ \text{Srecall} = \frac{5047}{5047+1958} = 72.05\% \end{array} \Rightarrow \text{SFmeasure} = 82.36\% \end{array}$$

• weighted average F-measure = 77.52%