

Embedding Probabilistic Logic for Machine Reading

aka Towards Two-Way Interaction with Reading Machines

Sebastian Riedel (University College London)

Collaborators

Tim Rocktäschel UCL

Limin Yao UMass Amherst (Twitter)

Matko Bosnjak UCL

Andrew McCallum UMass Amherst

Ivan Sanchez UCL

Ben Marlin UMass Amherst

Sameer Singh UWash

Machine Reading

Machine Reading

[Riedel et al., 2013]

Semantics as Reasoning

[Riedel et al., 2013]

Benefit: Transitive Reasoning

Benefit: More Coverage

Benefit: Code Reuse

Joint Inference

<pre>"Who lives in London and is interested in NLP? interest(x,NLP), worksFor(x,y), in(y,London)</pre>	<pre>in(UCL,London) works-in-area-of(Seb,NLP) lecturer-at(Seb,UCL) worksFor(x,y): faculty-at(x,y) interest(x,y): works-in-area-of(x,y)[0.9] livesIn(x,z): worksFor(x,y), locatedIn(y,z) [0.6]</pre>		Statistical Relational Learner and Reasoner
Wide universal schema	Syntax	Coreference	Statistical NLP

Reasoner and Learner

Statistical Relational Learner and Reasoner

Probabilistic Logics

prof-at

lecturer-at

Use (weighted) logics to define graphical models

works-for

Examples Markov Logic

[Richardson and Domingos, 2006]

Bayesian Logic Programs

[Kersting , 2007]

Probabilistic Logics

prof-at

lecturer-at

Use (weighted) logics to define graphical models

works-for

Problems ▶Inference ▶Rule Learning

Think of database as a matrix or tensor

lecturer-at prof-at works-for 1

Embed entity (pairs) in low dimensional vector spaces

Embed relations in low dimensional vector spaces

Find a matrix-matrix product that approximates observed DB

Or a non-linear function of this product

Low rank forces some 0 cells to become non-zero => prediction

[Nickel, Bordes, ...]

Overview

Freebase

Universal Schema Matrix

Schema contains structured and unstructured (~OpenIE) relations

X-is-professor-at-Y	X-museum-at-Y	X-teaches-history-at-Y	employee(X , Y)
1	1		1
1			
1		1	

Goal: Learn to Complete

Schema contains structured and unstructured (~OpenIE) relations

Model N: Baseline Classifier

[Mintz et al 2009,...]

Standard supervised relation extractor ...

X-is-professor-at-YX-museum-at-YX-teaches-history-at-Yemployee(X,Y) $y_{emp}^{x,y}$

○ training data

$$p(y_{\rm emp}^{x,y} = 1|$$
)

[Mintz et al 2009,...]

Standard supervised relation extractor ...

○ training data

$$p(y_{\rm emp}^{x,y} = 1 | \mathbf{f}_{\rm emp}^{x,y})$$

[Mintz et al 2009,...]

Standard supervised relation extractor ...

$$p(y_{\text{emp}}^{x,y} = 1 | \mathbf{f}_{\text{emp}}^{x,y}, \mathbf{w}_{\text{emp}})$$

[Mintz et al 2009,...]

Standard supervised relation extractor ...

$$p(y_{\text{emp}}^{x,y} = 1 | \mathbf{f}_{\text{emp}}^{x,y}, \mathbf{w}_{\text{emp}}) \propto \exp[\langle \mathbf{f}_{\text{emp}}^{x,y}, \mathbf{w}_{\text{emp}} \rangle]$$

... for each pattern

$$p(y_{\text{prof}}^{x,y} = 1 | \mathbf{f}_{\text{prof}}^{x,y}, \mathbf{w}_{\text{prof}}) \propto \exp[\langle \mathbf{f}_{\text{prof}}^{x,y}, \mathbf{w}_{\text{prof}} \rangle]$$

[Collins et al, 2001]

Model the probability of a pair (x,y) being in relation "prof"

$$p(\underline{y_{\text{prof}}^{x,y}} = 1 | \mathbf{v}^{x,y}, \mathbf{w}_{\text{prof}}) \propto \exp[\langle \mathbf{v}^{x,y}, \mathbf{w}_{\text{prof}} \rangle]$$

[Collins et al, 2001]

Per tuple latent feature vector

$$p(y_{\text{prof}}^{x,y} = 1 | \underline{\mathbf{v}}^{x,y}, \mathbf{w}_{\text{prof}}) \propto \exp[\langle \underline{\mathbf{v}}^{x,y}, \mathbf{w}_{\text{prof}} \rangle]$$

[Collins et al, 2001]

Per tuple latent feature vector

$$p(y_{\text{prof}}^{x,y} = 1 | \mathbf{v}^{x,y}, \underline{\mathbf{w}_{\text{prof}}}) \propto \exp[\langle \mathbf{v}^{x,y}, \underline{\mathbf{w}_{\text{prof}}} \rangle]$$

[Collins et al, 2001]

Per tuple latent feature vector

Model F: Latent Feature (Factorization)

Transitive Reasoning

Model F: Latent Feature (Factorization)

Bootstrapping without fantasy

Relations have entity type restriction

Relations have entity type restriction

Argument Slot 1 weight vector ...

 $p(y_{\text{prof}}^{x,y} = 1 | \dots) \propto \exp[\langle \mathbf{v}^x, \mathbf{w}_{\text{prof}}^1 \rangle + \langle \mathbf{v}^y, \mathbf{w}_{\text{prof}}^2 \rangle]$

... dot-product with feature vector of entity 1

 $p(y_{\text{prof}}^{x,y} = 1 | \dots) \propto \exp[\langle \mathbf{v}^x, \mathbf{w}_{\text{prof}}^1 \rangle + \langle \mathbf{v}^y, \mathbf{w}_{\text{prof}}^2 \rangle]$

Argument Slot 2 weight vector ...

 $p(y_{\text{prof}}^{x,y} = 1 | \dots) \propto \exp[\langle \mathbf{v}^x, \mathbf{w}_{\text{prof}}^1 \rangle + \langle \mathbf{v}^y, \mathbf{w}_{\text{prof}}^2 \rangle]$

... dot-product with feature vector of entity 2

 $p(y_{\text{prof}}^{x,y} = 1 | \dots) \propto \exp[\langle \mathbf{v}^x, \mathbf{w}_{\text{prof}}^1 \rangle + \langle \underline{\mathbf{v}}^y, \mathbf{w}_{\text{prof}}^2 \rangle]$

Combinations

models capture different aspects of the data, combine them (e.g., NF)

 $p(y_{\text{emp}}^{x,y} = 1 | \dots) \propto \exp[\langle \mathbf{f}_{\text{emp}}^{x,y}, \mathbf{w}_{\text{emp}}^{\text{N}} \rangle + \langle \mathbf{v}^{x,y}, \mathbf{w}_{\text{emp}}^{\text{F}} \rangle]$

Evaluation (Structured)

[Mintz 09; Yao 11; Surdenau 12]

Evaluate average precision per Freebase relation.

Relation	MI09	YA11	SU12	N+F+E	
employee	0.67	0.64	0.7	0.79	
containedby	0.48	0.51	0.54	0.69	
parents	0. ~45	0.39			
	. 40	. 4000 relations, ~50k entity pairs			
Weighted MAP	0.48	0.52	0.57	0.69	
MAP	0.32	0.42	0.56	0.63	

Injecting Knowledge

Injecting Knowledge

Injecting Knowledge: Rules

Goal: Predict Unseen Cells ...

native-of 's birthplace bornIn livesIn

... By Using Rules and Data

native-of 's birthplace bornIn livesIn

Baselines

Rules only
Rules after learning
Rules before learning

Pre-Injection may not add data at all

Pre-Injection may not add data at all

Idea: Iterate

Inference with modelApply rules

... and learn again

Our approach

[Rocktaeschel et al 15]

Directly optimise to fulfil formulae in expectation formulae have compositional expectations

$$\begin{split} E_{\mathbf{v},\mathbf{w}}[birthplace(Seb,HH)] &= E_{\mathbf{v},\mathbf{w}}[y_{birthplace}^{Seb,HH}] = sigm(<\mathbf{v}^{Seb,HH},\mathbf{w}_{birthplace}>)\\ E_{\mathbf{v},\mathbf{w}}[r(X_1,X_2)] &= sigm(<\mathbf{v}^{X_1,X_2},\mathbf{w}_r>)\\ E_{\mathbf{v},\mathbf{w}}[A \land B] &= E_{\mathbf{v},\mathbf{w}}[A] \times E_{\mathbf{v},\mathbf{w}}[B]\\ E_{\mathbf{v},\mathbf{w}}[\neg A] &= 1 - E_{\mathbf{v},\mathbf{w}}[A]\\ E_{\mathbf{v},\mathbf{w}}[A \Rightarrow B] &= 1 - (E_{\mathbf{v},\mathbf{w}}[A] \times (1 - E_{\mathbf{v},\mathbf{w}}[B])) \end{split}$$

Our approach

- Directly optimise to fulfil formulae in expectation
- formulae have compositional expectations
- quantification through grounding

$$E_{\mathbf{v},\mathbf{w}}[\forall x.f(x)] = E_{\mathbf{v},\mathbf{w}}[f(X_1) \wedge \dots \wedge f(X_n)]$$
$$= E_{\mathbf{v},\mathbf{w}}[f(X_1)] \times \dots \times E_{\mathbf{v},\mathbf{w}}[f(X_n)]$$

General Framework

- Find embeddings v and w that...
- Maximize log expectation of a set of formulae f

$$\arg\max_{\mathbf{v},\mathbf{w}}\sum_{f}\log(E_{\mathbf{v},\mathbf{w}}[f])$$

- Generalizes regular (binary) matrix factorization with logistic loss
- Get gradients by back-propagation through log(E[.]) tree
- Optimize via SGD / Adagrad etc.

Experiments

- "Zero-shot" learning
 - Given: a lot of surface form data, but no Freebase relations
 - Goal: given few (36) Freebase rules, learn to Freebase relations

Experiments: Zero-Shot Learning

Experiments: Zero-Shot Learning

and learn only	Freebase			
	X-is-professor-at-Y	X-museum-at-Y	X-teaches-history-at-Y	employee(X , Y)
	1	1		
	1			
	1		1	

Zero-Shot Learning Results (MAP)

Learning Curve

[Rocktaeschel et al 15]

63

Generating Data?

native-of 's birthplace

bornIn livesIn

Hasn't worked yet

- Row embeddings overtrain
- At test time premise appears with other relations

Challenge 1: Injecting Symbolic Rules

Challenge 2: Extracting Explanations

Challenge 2: Extracting Explanations

[Thrun 1995, NIPS, Craven 1996, NIPS]

"Knowledge Extraction"

- Learn a more interpretable model from distributed representations (for interpretation, not for use)
 - Neural Networks => if-then rules (Thrun, 95)
 - Neural Networks => Decision Trees (Craven, 96)
- Open Questions
 - Go beyond classification: joint models
 - Use to provide proofs of complex predictions
 - Integrate into a dialog between human and machine

Explaining Matrix Factorization

[Sanchez et al. 2015, KRR]

Extracting Bayesian Networks

Learn Embeddings from Data

Extracting Bayesian Networks

Generate data from embeddings (threshold or sample)

Extracting Bayesian Networks

Learning a tree shaped Bayesian Network

Benefits of Bayesian Network Trees

[Sanchez et al. 2015, KRR]

- Provide a joint model over all relations
 - more compact (than one decision tree per relation)
 - more faithful to the joint MF model
- Probabilistic interpretation, captures probabilistic nature of MF
- Very scalable
 - Learning: Prim Algorithm to find Maximum Spaning Tree over mutual information
 - Inference: Belief Propagation in non-loopy graph

Faithfulness

Averaged 11-point Precision/Recall

A "Proof"

- Model <u>observed</u> playAt(Eagles, Canton)
- Model wrongly <u>predicted</u> arenaStadium(Eagles, Canton)
- The Bayesian Network can provide this "proof"

Todo: evaluate this in a downstream "debugging" task

Summary

- Do semantics in a probabilistic relational reasoner
- Reasoner: matrix/tensor factorization (or other LV models)
- Models itself don't need to be interpretable if we know ...
- Interact with uninterpretable models
 - inject explanations and logical rules
 - Approach: optimize embeddings to fulfil formulae
 - extract explanations

▶ for example: by using an interpretable BN **proxy** model

Thanks

77

Training

Usually **unavailable** or **sparse**, so...

X-is-historian-at-Y	X-is-professor-at-Y	X-museum-at-Y	X-teaches-history-at-Y	employee(X,Y)
	1	1		1
1	1			
	1		1	
1				

...subsample, which can work...

X-is-historian-at-Y	X-is-professor-at-Y	X-museum-at-Y	X-teaches-history-at-Y	employee(X , Y)
	1	1		1
1	1	0		
	1		1	
1				

but often does not

X-is-historian-at-Y	X-is-professor-at-Y	X-museum-at-Y	X-teaches-history-at-Y	employee(X,Y)
	1	1		1
1	1			
0	1		1	
1				

and you need to sample a lot (wasting resources)

Implicit Feedback

Often users only **click/view/buy** items, or not, but **no rating**

User 1	User 2	User 3	User 4	User 5	
	1	1		1	Item 1
1	1				Item 2
	1		1		Item 3
1					Item 4

Ranking

[Rendle et al.,09]

for all (**o**bserved,**n**ot observed) pairs in column: prob(o) > prob(n)

X-is-historian-at-Y	X-is-professor-at-Y	X-museum-at-Y	X-teaches-history-at-Y	employee(X , Y)
	1	1		1
0.9	1			
0.95	1		1	
1				

Ranking

[Rendle et al.,09]

for all (**o**bserved,**n**ot observed) pairs in a column: prob(o) > prob(n)

X-is-historian-at-Y	X-is-professor-at-Y	X-museum-at-Y	X-teaches-history-at-Y	employee(X,Y)
	1	1		1
0.9	1			
0.85	1		1	
1				

[Rendle et al.,09]

Sample observed fact...

[Rendle et al.,09]

Sample unobserved cell for same relation

[Rendle et al.,09]

Estimate current beliefs and gradient, update parameters accordingly

[Rendle et al.,09]

Estimate current beliefs and gradient, update parameters accordingly

How can we do this?

native-of 's birthplace bornIn livesIn

birthplace(x,y) => bornln(x,y)

Overview: Embeddings and ...

