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Machine Reading

3

Narrow domain-specific schema

”Sebastian Riedel works in the area of NLP and is now Lecturer at UCL“

Semantics

Syntax Coreference

worksFor(Seb,UCL)

Relational DB

Statistical NLP

interest(Seb,NLP)

in(UCL,London)

“Who works in London and  
is interested in NLP?

interest(x,NLP),
worksFor(x,y),  
in(y,London)

[Kwiatkowski et al., 2013]

[Mintz et al., 2009]



Machine Reading

4

Wide universal schema

Syntax Coreference

lecturer-at(Seb,UCL)

Statistical NLP

”Sebastian Riedel works in the area of NLP and is now Lecturer at UCL“

works-in-area-of(Seb,NLP)

in(UCL,London)

“Who works in London and  
is interested in NLP?

Relational DB
interest(x,NLP),
worksFor(x,y),
in(y,London)

[Riedel et al., 2013]

Semantics



Semantics as Reasoning
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Wide universal schema

Syntax Coreference

lecturer-at(Seb,UCL)

Statistical NLP

”Sebastian Riedel works in the area of NLP and is now Lecturer at UCL“

works-in-area-of(Seb,NLP)

in(UCL,London)

“Who works in London and  
is interested in NLP?

interest(x,y): 
  works-in-area-of(x,y)[0.9]

Statistical Relational  
Learner and Reasoner

faculty-at(x,y): 
  lecturer-at(x,y)

worksFor(x,y): 
  faculty-at(x,y)interest(x,NLP),

worksFor(x,y),
in(y,London)

[Riedel et al., 2013]



Benefit: Transitive Reasoning
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Wide universal schema

Syntax Coreference

lecturer-at(Seb,UCL)

Statistical NLP

”Sebastian Riedel works in the area of NLP and is now Lecturer at UCL“

works-in-area-of(Seb,NLP)

in(UCL,London)

worksFor(x,y): 
  faculty-at(x,y)

interest(x,y): 
  works-in-area-of(x,y)[0.9]

Statistical Relational  
Learner and Reasoner

“Who works in London and  
is interested in NLP?

interest(x,NLP),
worksFor(x,y),
in(y,London)

faculty-at(x,y): 
  lecturer-at(x,y)



Benefit: More Coverage
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Wide universal schema

Syntax Coreference

lecturer-at(Seb,UCL)

Statistical NLP

”Sebastian Riedel works in the area of NLP and is now Lecturer at UCL“

works-in-area-of(Seb,NLP)

in(UCL,London)

“Who is faculty in London  
and interested in NLP?

interest(x,y): 
  works-in-area-of(x,y)[0.9]

Statistical Relational  
Learner and Reasoner

worksFor(x,y): 
  faculty-at(x,y)interest(x,NLP),

worksFor(x,y),
in(y,London)

faculty-at(x,y): 
  lecturer-at(x,y)



Benefit: Code Reuse
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Wide universal schema

Syntax Coreference

lecturer-at(Seb,UCL)

Statistical NLP

”Sebastian Riedel works in the area of NLP and is now Lecturer at UCL“

works-in-area-of(Seb,NLP)

in(UCL,London)

“Who lives in London  
and is interested in NLP?

interest(x,y): 
  works-in-area-of(x,y)[0.9]

Statistical Relational  
Learner and Reasoner

livesIn(x,z): 
  worksFor(x,y),
 locatedIn(y,z) [0.6] 

worksFor(x,y): 
  faculty-at(x,y)interest(x,NLP),

worksFor(x,y),
in(y,London)

[Lao et al., 2011]



Joint Inference
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Wide universal schema

Syntax Coreference

lecturer-at(Seb,UCL)

Statistical NLP

”Sebastian Riedel works in the area of NLP and is now Lecturer at UCL“

works-in-area-of(Seb,NLP)

in(UCL,London)

“Who lives in London  
and is interested in NLP?

interest(x,y): 
  works-in-area-of(x,y)[0.9]

Statistical Relational  
Learner and Reasoner

livesIn(x,z): 
  worksFor(x,y),
 locatedIn(y,z) [0.6] 

worksFor(x,y): 
  faculty-at(x,y)interest(x,NLP),

worksFor(x,y),
in(y,London)



Reasoner and Learner
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?

Statistical Relational  
Learner and Reasoner



Use (weighted) logics to define graphical models  

Probabilistic Logics

11

lecturer-at prof-at works-for

Examples 
Markov Logic  

Bayesian Logic 
Programs

[Richardson and Domingos, 2006]

[Kersting , 2007]



Use (weighted) logics to define graphical models  

Probabilistic Logics

12

lecturer-at prof-at works-for

Problems 
Inference 
Rule Learning



Think of database as a matrix or tensor

Matrix Factorization

13

lecturer-at prof-at works-for

1
1 1

11
1



Embed entity (pairs) in low dimensional vector spaces

Matrix Factorization

14

1
1 1

11
1

? ?

? ?

? ?

? ?

lecturer-at prof-at works-for



Embed relations in low dimensional vector spaces

Matrix Factorization
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lecturer-at prof-at works-for

1
1 1

11
1

? ?

? ?

? ?

? ?

?
?

?
?

?
?



Find a matrix-matrix product that approximates observed DB 

Matrix Factorization
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lecturer-at prof-at works-for

1
1 1

11
1

? ?

? ?

? ?

? ?

?
?

?
?

?
?⇡ ⇥



Or a non-linear function of this product

Matrix Factorization

17

1
1 1

11
1

⇡ ⇥sigmoid



Low rank forces some 0 cells to become non-zero => prediction

Matrix Factorization

18

1
1 1

11
1

⇡ ⇥sigmoid

[Nickel, Bordes, …]

.9

.9



Overview

19

Matrix Factorization 
Models

⇥sigmoid?Data

⇥sigmoid

“lecturers are employees!”

?

KB

8x, y : #2-unit-of-#1(x, y) ) organization/parent/child(x, y)
Example: “Boeing and the Sikorsky Aircraft#2 unit of the United Technologies Corporation#1 were selected [...]”
8x, y : #1-city-in-#2(x, y) ) location/containedby(x, y)
Example: “With 900,000 people, San Jose#1 is the third-largest city in California#2, [...]”

|R|

|P|

k

|P| |R|

k

|R|

|P|

Evidence Sparse Training Matrix Low-rank Logic Embeddings Completed Matrix

Facts

First-order
Formulae

Figure 1: Injecting Logic into Matrix Factorization: Given a sparse binary matrix consisting of observed facts over
entity-pairs P and predicates/relations R, matrix factorization is used to learn k-dimensional relation and entity-pair
embeddings that approximate the observed matrix. In this paper we use additional first-order logic formulae over
entities and relations to learn the embeddings such that the predictions (completed matrix) also satisfy these formulae.

3 Injecting Logic Into Factorization

Matrix factorization is capable of learning complex
dependencies between relations, but requires ob-
served facts as training signal. However, we often
either do not have this signal because we are inter-
ested in relations that do not have pre-existing facts,
or this signal is noisy due to alignment errors or mis-
match when linking KB entities to mentions in text.

To overcome the above problem we investigate the
use of first-order logical background knowledge (e.g.
implications) to aid relation extraction. One option is
to rely on a fully symbolic approach that exclusively
uses first-order logic (Bos and Markert, 2005; Baader
et al., 2007; Bos, 2008). In this case incorporating
additional background knowledge is trivial. However,
it is difficult to generalize and deal with noise and
uncertainty in language when relying only on manual
rules. In contrast, matrix factorization methods can
overcome these shortcomings, but it is not clear how
they can be combined with logical formulae.

In this section, we propose to inject formulae into
the embeddings of relations and entity-pairs, i.e., es-
timate the embeddings such that the predictions con-
form to the given logic formulae (see Figure 1 for
an overview). We refer to such embeddings as low-
rank logic embeddings. Akin to matrix factorization,
inference of a fact at test time still amounts to an
efficient dot product of the corresponding relation
and entity-pair embeddings, and logical inference is
not needed. We present two techniques for inject-
ing logical background knowledge, pre-factorization

inference (§3.1) and joint optimization (§3.2), and
demonstrate in subsequent sections that they gen-
eralize better than direct logical inference, even if
such inference is performed on the predictions of the
matrix factorization model.

3.1 Pre-Factorization Inference
Background knowledge in form of first-order formu-
lae can be seen as hints that can be used to generate
additional training data (Abu-Mostafa, 1990). For
pre-factorization inference we first perform logical
inference on the training data and add inferred facts
as additional training facts. For example, for a for-
mula F = 8x, y : r

A

(x, y)) r

B

(x, y), we add an
additional observed cell r

B

(x, y) for any (x, y) for
which r

A

(x, y) is observed in the distant supervision
training data. This is repeated until no further facts
can be inferred. Subsequently, we run matrix factor-
ization on the extended set of observed cells.

The main intuition is that the additional training
data generated by the formulae provides extra evi-
dence of the logical dependencies to the matrix fac-
torization, while at the same time allowing the fac-
torization to generalize to unobserved facts and to
deal with ambiguity and noise in the data. No further
logical inference is performed during or after training
of the matrix factorization model as we expect that
the learned embeddings encode the given formulae.

3.2 Joint Optimization
One drawback of pre-factorization inference is that
the formulae are enforced only on observed atoms,

Injecting Knowledge 

⇥sigmoid

“lecturers are employees?”

KB

8x, y : #2-unit-of-#1(x, y) ) organization/parent/child(x, y)
Example: “Boeing and the Sikorsky Aircraft#2 unit of the United Technologies Corporation#1 were selected [...]”
8x, y : #1-city-in-#2(x, y) ) location/containedby(x, y)
Example: “With 900,000 people, San Jose#1 is the third-largest city in California#2, [...]”

|R|

|P|

k

|P| |R|

k

|R|

|P|

Evidence Sparse Training Matrix Low-rank Logic Embeddings Completed Matrix

Facts

First-order
Formulae

Figure 1: Injecting Logic into Matrix Factorization: Given a sparse binary matrix consisting of observed facts over
entity-pairs P and predicates/relations R, matrix factorization is used to learn k-dimensional relation and entity-pair
embeddings that approximate the observed matrix. In this paper we use additional first-order logic formulae over
entities and relations to learn the embeddings such that the predictions (completed matrix) also satisfy these formulae.

3 Injecting Logic Into Factorization

Matrix factorization is capable of learning complex
dependencies between relations, but requires ob-
served facts as training signal. However, we often
either do not have this signal because we are inter-
ested in relations that do not have pre-existing facts,
or this signal is noisy due to alignment errors or mis-
match when linking KB entities to mentions in text.

To overcome the above problem we investigate the
use of first-order logical background knowledge (e.g.
implications) to aid relation extraction. One option is
to rely on a fully symbolic approach that exclusively
uses first-order logic (Bos and Markert, 2005; Baader
et al., 2007; Bos, 2008). In this case incorporating
additional background knowledge is trivial. However,
it is difficult to generalize and deal with noise and
uncertainty in language when relying only on manual
rules. In contrast, matrix factorization methods can
overcome these shortcomings, but it is not clear how
they can be combined with logical formulae.

In this section, we propose to inject formulae into
the embeddings of relations and entity-pairs, i.e., es-
timate the embeddings such that the predictions con-
form to the given logic formulae (see Figure 1 for
an overview). We refer to such embeddings as low-
rank logic embeddings. Akin to matrix factorization,
inference of a fact at test time still amounts to an
efficient dot product of the corresponding relation
and entity-pair embeddings, and logical inference is
not needed. We present two techniques for inject-
ing logical background knowledge, pre-factorization

inference (§3.1) and joint optimization (§3.2), and
demonstrate in subsequent sections that they gen-
eralize better than direct logical inference, even if
such inference is performed on the predictions of the
matrix factorization model.

3.1 Pre-Factorization Inference
Background knowledge in form of first-order formu-
lae can be seen as hints that can be used to generate
additional training data (Abu-Mostafa, 1990). For
pre-factorization inference we first perform logical
inference on the training data and add inferred facts
as additional training facts. For example, for a for-
mula F = 8x, y : r

A

(x, y)) r

B

(x, y), we add an
additional observed cell r

B

(x, y) for any (x, y) for
which r

A

(x, y) is observed in the distant supervision
training data. This is repeated until no further facts
can be inferred. Subsequently, we run matrix factor-
ization on the extended set of observed cells.

The main intuition is that the additional training
data generated by the formulae provides extra evi-
dence of the logical dependencies to the matrix fac-
torization, while at the same time allowing the fac-
torization to generalize to unobserved facts and to
deal with ambiguity and noise in the data. No further
logical inference is performed during or after training
of the matrix factorization model as we expect that
the learned embeddings encode the given formulae.

3.2 Joint Optimization
One drawback of pre-factorization inference is that
the formulae are enforced only on observed atoms,

Extracting Knowledge ?

“Talking to Reading Machines”



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1

1 1

Schema contains structured and unstructured (~OpenIE) relations 

Universal Schema Matrix

20



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 ? 1

1 ? ? ?

1 ? 1 ?

? ? ? ?

Schema contains structured and unstructured (~OpenIE) relations 

Goal: Learn to Complete 

21



p(yx,yemp = 1|fx,yemp,wemp) / exp[< fx,yemp,wemp >]

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

Standard supervised relation extractor ...

[Mintz et al 2009,...]

Model N: Baseline Classifier

22

yx,yemp

training data



p(yx,yemp = 1|fx,yemp,wemp) / exp[< fx,yemp,wemp >]

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

Standard supervised relation extractor ...

[Mintz et al 2009,...]

Model N: Classifier

23

yx,yemp

training data

observed



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

Standard supervised relation extractor ...

[Mintz et al 2009,...]

Model N: Classifier

24

yx,yemp

wemp

p(yx,yemp = 1|fx,yemp,wemp) / exp[< fx,yemp,wemp >]

parameter

training data

observed



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

Standard supervised relation extractor ...

[Mintz et al 2009,...]

Model N: Classifier

25

yx,yemp

wemp

p(yx,yemp = 1|fx,yemp,wemp) / exp[< fx,yemp,wemp >]

parameter

training data

observed



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

... for each pattern

Model N: Classifier

26

yx,y
prof

w
prof

p(yx,y
prof

= 1|fx,y
prof

,w
prof

) / exp[< fx,y
prof

,w
prof

>]

parameter

training data

observed



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1

Model the probability of a pair (x,y) being in relation “prof”

[Collins et al, 2001]

Model F: Latent Feature (Factorization)

27

vx,y

w
prof

yx,y
prof

p(yx,y
prof

= 1|vx,y,w
prof

) / exp[< vx,y,w
prof

>]

parameter

training data



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1

Per tuple latent feature vector

[Collins et al, 2001]

Model F: Latent Feature (Factorization)

28
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training data



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1

Per tuple latent feature vector

[Collins et al, 2001]

Model F: Latent Feature (Factorization)
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X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

Per tuple latent feature vector

[Collins et al, 2001]

Model F: Latent Feature (Factorization)

30

vx,y

w
prof

p(yx,y
prof

= 1|vx,y,w
prof

) / exp[< vx,y,w
prof

>]

yx,yemp

wemp

parameter

training data

yx,y
prof

= sigmoid (< vx,y

,w
prof

>)



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

Transitive Reasoning

Model F: Latent Feature (Factorization)

31
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

Model F: Latent Feature (Factorization)

32
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Transitive Reasoning



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

Model F: Latent Feature (Factorization)
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Transitive Reasoning



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

Model F: Latent Feature (Factorization)
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Transitive Reasoning



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

Model F: Latent Feature (Factorization)
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Transitive Reasoning



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

Model F: Latent Feature (Factorization)
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Transitive Reasoning



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

Model F: Latent Feature (Factorization)
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Transitive Reasoning



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

Bootstrapping without fantasy 

Model F: Latent Feature (Factorization)
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X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

Relations have entity type restriction

Model E: Selectional Preferences

39

(         ,       )

(         ,       )

(         ,        )



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

0 0 0

Relations have entity type restriction

Model E: Selectional Preferences

40

(         ,       )

(         ,       )

(         ,        )



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

1

1

Argument Slot 1 weight vector ... 

Model E: Selectional Preferences

41

(         ,       )

(         ,       )

w1

prof

w2

prof

yx,y
prof

vx

vy

p(yx,y
prof

= 1| . . .) / exp[< vx,w1

prof

> + < vy,w2

prof

>]



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

1

1

... dot-product with feature vector of entity 1

Model E: Selectional Preferences
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(         ,       )
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prof
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prof
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prof

> + < vy,w2
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>]



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

1

1

Argument Slot 2 weight vector ... 

Model E: Selectional Preferences
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(         ,       )

(         ,       )

w1

prof

w2

prof

yx,y
prof

vx

vy

p(yx,y
prof

= 1| . . .) / exp[< vx,w1

prof

> + < vy,w2

prof

>]



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

1

1

... dot-product with feature vector of entity 2

Model E: Selectional Preferences
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(         ,       )

(         ,       )
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prof

w2
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>]



models capture different aspects of the data, combine them (e.g., NF)

Combinations

45

p(yx,yemp = 1| . . . ) / exp[< fx,yemp,w
N
emp > + < vx,y,wF

emp >]



Evaluate average precision per Freebase relation. 

[Mintz 09; Yao 11; Surdenau 12]

Evaluation (Structured)

46

Relation MI09 YA11 SU12 N+F+E

employee 0.67 0.64 0.7 0.79

containedby 0.48 0.51 0.54 0.69

parents 0.24 0.27 0.58 0.39

... ... ... ... ...

Weighted MAP 0.48 0.52 0.57 0.69

MAP 0.32 0.42 0.56 0.63

~45 minutes to train our models on 
4000 relations, ~50k entity pairs



Injecting Knowledge

47

⇥sigmoid

“lecturers are employees!”

?

KB
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Figure 1: Injecting Logic into Matrix Factorization: Given a sparse binary matrix consisting of observed facts over
entity-pairs P and predicates/relations R, matrix factorization is used to learn k-dimensional relation and entity-pair
embeddings that approximate the observed matrix. In this paper we use additional first-order logic formulae over
entities and relations to learn the embeddings such that the predictions (completed matrix) also satisfy these formulae.

3 Injecting Logic Into Factorization

Matrix factorization is capable of learning complex
dependencies between relations, but requires ob-
served facts as training signal. However, we often
either do not have this signal because we are inter-
ested in relations that do not have pre-existing facts,
or this signal is noisy due to alignment errors or mis-
match when linking KB entities to mentions in text.

To overcome the above problem we investigate the
use of first-order logical background knowledge (e.g.
implications) to aid relation extraction. One option is
to rely on a fully symbolic approach that exclusively
uses first-order logic (Bos and Markert, 2005; Baader
et al., 2007; Bos, 2008). In this case incorporating
additional background knowledge is trivial. However,
it is difficult to generalize and deal with noise and
uncertainty in language when relying only on manual
rules. In contrast, matrix factorization methods can
overcome these shortcomings, but it is not clear how
they can be combined with logical formulae.

In this section, we propose to inject formulae into
the embeddings of relations and entity-pairs, i.e., es-
timate the embeddings such that the predictions con-
form to the given logic formulae (see Figure 1 for
an overview). We refer to such embeddings as low-
rank logic embeddings. Akin to matrix factorization,
inference of a fact at test time still amounts to an
efficient dot product of the corresponding relation
and entity-pair embeddings, and logical inference is
not needed. We present two techniques for inject-
ing logical background knowledge, pre-factorization

inference (§3.1) and joint optimization (§3.2), and
demonstrate in subsequent sections that they gen-
eralize better than direct logical inference, even if
such inference is performed on the predictions of the
matrix factorization model.

3.1 Pre-Factorization Inference
Background knowledge in form of first-order formu-
lae can be seen as hints that can be used to generate
additional training data (Abu-Mostafa, 1990). For
pre-factorization inference we first perform logical
inference on the training data and add inferred facts
as additional training facts. For example, for a for-
mula F = 8x, y : r

A

(x, y)) r

B

(x, y), we add an
additional observed cell r

B

(x, y) for any (x, y) for
which r

A

(x, y) is observed in the distant supervision
training data. This is repeated until no further facts
can be inferred. Subsequently, we run matrix factor-
ization on the extended set of observed cells.

The main intuition is that the additional training
data generated by the formulae provides extra evi-
dence of the logical dependencies to the matrix fac-
torization, while at the same time allowing the fac-
torization to generalize to unobserved facts and to
deal with ambiguity and noise in the data. No further
logical inference is performed during or after training
of the matrix factorization model as we expect that
the learned embeddings encode the given formulae.

3.2 Joint Optimization
One drawback of pre-factorization inference is that
the formulae are enforced only on observed atoms,
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⇥sigmoid

“a liquid turns into a solid 
when its temperature is 
lowered below its freezing point

?



Injecting Knowledge: Rules
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⇥sigmoid?
∀x,y: birthplace(x,y)  
  ⇒ bornIn(x,y)



Goal: Predict Unseen Cells …
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… By Using Rules and Data
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Pre-Injection may not add data at all
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∀x,y: birthplace(x,y) ⇒ bornIn(x,y)



Pre-Injection may not add data at all
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native-of bornIn’s birthplace livesIn
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Rules before learning

∀x,y: birthplace(x,y) ⇒ bornIn(x,y)



Idea: Iterate 
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… and learn again 

∀x,y: birthplace(x,y) ⇒ bornIn(x,y)



Our approach

Directly optimise to fulfil formulae in expectation 

formulae have compositional expectations
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Ev ,w[birthplace(Seb,HH )]= Ev ,w[ybirthplace
Seb,HH ]= sigm(< vSeb,HH ,wbirthplace >)

Ev ,w[r(X1,X2 )]= sigm(< v
X1,X2 ,wr >)

Ev ,w[A∧ B]= Ev ,w[A]× Ev ,w[B]

Ev ,w[¬A]= 1− Ev ,w[A]

Ev ,w[A⇒ B]= 1− (Ev ,w[A]× (1− Ev ,w[B]))

[Rocktaeschel et al 15]



Our approach

Directly optimise to fulfil formulae in expectation 

formulae have compositional expectations 

quantification through grounding

57

Ev ,w[∀x. f (x)]= Ev ,w[ f (X1)∧…∧ f (Xn )]
= Ev ,w[ f (X1)]×…× Ev ,w[ f (Xn )]

[Rocktaeschel et al 15]



General Framework

Find embeddings v and w that… 

Maximize log expectation of a set of formulae f

58

[Rocktaeschel et al 15]

argmaxv ,w∑ f log Ev ,w[ f ]( )
Generalizes regular (binary) matrix factorization 
with logistic loss 

Get gradients by back-propagation through 
log(E[.]) tree 

Optimize via SGD / Adagrad etc.



Experiments

“Zero-shot” learning 

Given: a lot of surface form data, but no Freebase 
relations 

Goal: given few (36) Freebase rules, learn to Freebase 
relations

59

[Rocktaeschel et al 15]



X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1

1 1

Remove Freebase data from training set …

Experiments: Zero-Shot Learning
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X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1

1

1 1

and learn only from surface form relations, and rules

Experiments: Zero-Shot Learning
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Zero-Shot Learning Results (MAP)
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Learning Curve
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Relation # MF Inf Post Pre Joint

person/company 102 0.07 0.03 0.15 0.31 0.35
location/containedby 72 0.03 0.06 0.14 0.22 0.31
author/works written 27 0.02 0.05 0.18 0.31 0.27
person/nationality 25 0.01 0.19 0.09 0.15 0.19
parent/child 19 0.01 0.01 0.48 0.66 0.75
person/place of birth 18 0.01 0.43 0.40 0.56 0.59
person/place of death 18 0.01 0.24 0.23 0.27 0.23
neighborhood/neighborhood of 11 0.00 0.00 0.60 0.63 0.65
person/parents 6 0.00 0.17 0.19 0.37 0.65
company/founders 4 0.00 0.25 0.13 0.37 0.77
film/directed by 2 0.00 0.50 0.50 0.36 0.51
film/produced by 1 0.00 1.00 1.00 1.00 1.00

MAP 0.01 0.23 0.34 0.43 0.52
Weighted MAP 0.03 0.10 0.21 0.33 0.38

Table 1: Zero-shot Relation Learning: Average and
(weighted) mean average precisions with relations that do
not appear in any of the annotated formulae omitted from
the evaluation. The difference between “Pre” and “Joint”
is significant according to the sign-test (p < 0.05).

For every matrix factorization based method we
use k = 100 as the dimension for the embeddings,
� = 0.01 as parameter of the `2-regularization and
↵ = 0.1 as initial learning rate for AdaGrad, which
we run for 200 iterations.

5 Results and Discussion

To evaluate the utility of injecting logic formulae
into the embeddings, we present a comparison on a
variety of benchmarks. First, in §5.1 we study the
scenario of learning extractors for relations for which
we do not have any Freebase alignments, evaluating
how the approaches are able to generalize only from
logic formulae and textual patterns. In §5.2 we then
describe an experiment where the amount of Free-
base alignments is varied in order to assess the effect
of combining distant supervision and background
knowledge on the accuracy of predictions. Although
the methods presented in this paper target relations
with insufficient alignments, we also provide a com-
parison on the complete distant supervision dataset
in §5.3. We conclude in §5.4 with a brief analysis of
the reasoning capacity of the learned embeddings.

5.1 Zero-shot Relation Learning
We start with the scenario of learning extractors for
relations that do not appear in the KB schema, i.e.,
those that do not have any textual alignments. Such
a scenario occurs in practice when a new relation
needs to be added to the KB for which no facts are
known that would connect the new relation to ex-

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5

w
M

AP

Fraction of Freebase training facts

MF
Joint
Pre

Post

Figure 2: Relations with Few Distant Labels:
Weighted mean average precisions of the various methods
as the fraction of Freebase training facts is varied.

isting relations and surface patterns. For accurate
extractions for such relations, the model needs to rely
primarily on background domain knowledge to iden-
tify relevant textual alignments, but also at the same
time needs to utilize the correlations within textual
patterns for generalization. To simulate this setup,
we remove all alignments between all entity-pairs
and Freebase relations from the distant supervision
data, use the extracted logic formulae (§4) as back-
ground knowledge, and evaluate on the ability of the
different methods to recover the lost alignments.

Table 1 provides detailed results. Unsurprisingly,
matrix factorization performs poorly since embed-
dings cannot be learned for the Freebase relations
without any observed cells. Logical inference is lim-
ited by the number of known facts that appear as
premise in one of the implications. Although post-
factorization inference is able to achieve a large im-
provement over logical inference, explicitly injecting
logical formulae into the embeddings (i.e. learning
low-rank logic embeddings) using pre-factorization
inference or joint optimization gives superior results.
Last, we observe that joint optimization is able to
best combine logical and textual patterns for accu-
rate, zero-shot learning of relation extractors.

5.2 Relations with Few Distant Labels

In this section we study the scenario of learning rela-
tions that have only a few distant supervision align-
ments, in particular, we observe the behavior of the
various methods as the amount of distant supervision
is varied. We run all of the methods on training data

[Rocktaeschel et al 15]
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Challenge 1: Injecting Symbolic Rules
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⇥sigmoid“lecturers are employees!” ?

KB

8x, y : #2-unit-of-#1(x, y) ) organization/parent/child(x, y)
Example: “Boeing and the Sikorsky Aircraft#2 unit of the United Technologies Corporation#1 were selected [...]”
8x, y : #1-city-in-#2(x, y) ) location/containedby(x, y)
Example: “With 900,000 people, San Jose#1 is the third-largest city in California#2, [...]”
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Formulae

Figure 1: Injecting Logic into Matrix Factorization: Given a sparse binary matrix consisting of observed facts over
entity-pairs P and predicates/relations R, matrix factorization is used to learn k-dimensional relation and entity-pair
embeddings that approximate the observed matrix. In this paper we use additional first-order logic formulae over
entities and relations to learn the embeddings such that the predictions (completed matrix) also satisfy these formulae.

3 Injecting Logic Into Factorization

Matrix factorization is capable of learning complex
dependencies between relations, but requires ob-
served facts as training signal. However, we often
either do not have this signal because we are inter-
ested in relations that do not have pre-existing facts,
or this signal is noisy due to alignment errors or mis-
match when linking KB entities to mentions in text.

To overcome the above problem we investigate the
use of first-order logical background knowledge (e.g.
implications) to aid relation extraction. One option is
to rely on a fully symbolic approach that exclusively
uses first-order logic (Bos and Markert, 2005; Baader
et al., 2007; Bos, 2008). In this case incorporating
additional background knowledge is trivial. However,
it is difficult to generalize and deal with noise and
uncertainty in language when relying only on manual
rules. In contrast, matrix factorization methods can
overcome these shortcomings, but it is not clear how
they can be combined with logical formulae.

In this section, we propose to inject formulae into
the embeddings of relations and entity-pairs, i.e., es-
timate the embeddings such that the predictions con-
form to the given logic formulae (see Figure 1 for
an overview). We refer to such embeddings as low-
rank logic embeddings. Akin to matrix factorization,
inference of a fact at test time still amounts to an
efficient dot product of the corresponding relation
and entity-pair embeddings, and logical inference is
not needed. We present two techniques for inject-
ing logical background knowledge, pre-factorization

inference (§3.1) and joint optimization (§3.2), and
demonstrate in subsequent sections that they gen-
eralize better than direct logical inference, even if
such inference is performed on the predictions of the
matrix factorization model.

3.1 Pre-Factorization Inference
Background knowledge in form of first-order formu-
lae can be seen as hints that can be used to generate
additional training data (Abu-Mostafa, 1990). For
pre-factorization inference we first perform logical
inference on the training data and add inferred facts
as additional training facts. For example, for a for-
mula F = 8x, y : r

A

(x, y)) r

B

(x, y), we add an
additional observed cell r

B

(x, y) for any (x, y) for
which r

A

(x, y) is observed in the distant supervision
training data. This is repeated until no further facts
can be inferred. Subsequently, we run matrix factor-
ization on the extended set of observed cells.

The main intuition is that the additional training
data generated by the formulae provides extra evi-
dence of the logical dependencies to the matrix fac-
torization, while at the same time allowing the fac-
torization to generalize to unobserved facts and to
deal with ambiguity and noise in the data. No further
logical inference is performed during or after training
of the matrix factorization model as we expect that
the learned embeddings encode the given formulae.

3.2 Joint Optimization
One drawback of pre-factorization inference is that
the formulae are enforced only on observed atoms,
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⇥sigmoid“lecturers are employees!”
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8x, y : #2-unit-of-#1(x, y) ) organization/parent/child(x, y)
Example: “Boeing and the Sikorsky Aircraft#2 unit of the United Technologies Corporation#1 were selected [...]”
8x, y : #1-city-in-#2(x, y) ) location/containedby(x, y)
Example: “With 900,000 people, San Jose#1 is the third-largest city in California#2, [...]”
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Figure 1: Injecting Logic into Matrix Factorization: Given a sparse binary matrix consisting of observed facts over
entity-pairs P and predicates/relations R, matrix factorization is used to learn k-dimensional relation and entity-pair
embeddings that approximate the observed matrix. In this paper we use additional first-order logic formulae over
entities and relations to learn the embeddings such that the predictions (completed matrix) also satisfy these formulae.

3 Injecting Logic Into Factorization

Matrix factorization is capable of learning complex
dependencies between relations, but requires ob-
served facts as training signal. However, we often
either do not have this signal because we are inter-
ested in relations that do not have pre-existing facts,
or this signal is noisy due to alignment errors or mis-
match when linking KB entities to mentions in text.

To overcome the above problem we investigate the
use of first-order logical background knowledge (e.g.
implications) to aid relation extraction. One option is
to rely on a fully symbolic approach that exclusively
uses first-order logic (Bos and Markert, 2005; Baader
et al., 2007; Bos, 2008). In this case incorporating
additional background knowledge is trivial. However,
it is difficult to generalize and deal with noise and
uncertainty in language when relying only on manual
rules. In contrast, matrix factorization methods can
overcome these shortcomings, but it is not clear how
they can be combined with logical formulae.

In this section, we propose to inject formulae into
the embeddings of relations and entity-pairs, i.e., es-
timate the embeddings such that the predictions con-
form to the given logic formulae (see Figure 1 for
an overview). We refer to such embeddings as low-
rank logic embeddings. Akin to matrix factorization,
inference of a fact at test time still amounts to an
efficient dot product of the corresponding relation
and entity-pair embeddings, and logical inference is
not needed. We present two techniques for inject-
ing logical background knowledge, pre-factorization

inference (§3.1) and joint optimization (§3.2), and
demonstrate in subsequent sections that they gen-
eralize better than direct logical inference, even if
such inference is performed on the predictions of the
matrix factorization model.

3.1 Pre-Factorization Inference
Background knowledge in form of first-order formu-
lae can be seen as hints that can be used to generate
additional training data (Abu-Mostafa, 1990). For
pre-factorization inference we first perform logical
inference on the training data and add inferred facts
as additional training facts. For example, for a for-
mula F = 8x, y : r

A

(x, y)) r

B

(x, y), we add an
additional observed cell r

B

(x, y) for any (x, y) for
which r

A

(x, y) is observed in the distant supervision
training data. This is repeated until no further facts
can be inferred. Subsequently, we run matrix factor-
ization on the extended set of observed cells.

The main intuition is that the additional training
data generated by the formulae provides extra evi-
dence of the logical dependencies to the matrix fac-
torization, while at the same time allowing the fac-
torization to generalize to unobserved facts and to
deal with ambiguity and noise in the data. No further
logical inference is performed during or after training
of the matrix factorization model as we expect that
the learned embeddings encode the given formulae.

3.2 Joint Optimization
One drawback of pre-factorization inference is that
the formulae are enforced only on observed atoms,

?
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⇥sigmoid“I returned Sebastian
because we know he is a lecturer
at UCL, which is in London,
so he most likely lives in London
…

KB

8x, y : #2-unit-of-#1(x, y) ) organization/parent/child(x, y)
Example: “Boeing and the Sikorsky Aircraft#2 unit of the United Technologies Corporation#1 were selected [...]”
8x, y : #1-city-in-#2(x, y) ) location/containedby(x, y)
Example: “With 900,000 people, San Jose#1 is the third-largest city in California#2, [...]”
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Figure 1: Injecting Logic into Matrix Factorization: Given a sparse binary matrix consisting of observed facts over
entity-pairs P and predicates/relations R, matrix factorization is used to learn k-dimensional relation and entity-pair
embeddings that approximate the observed matrix. In this paper we use additional first-order logic formulae over
entities and relations to learn the embeddings such that the predictions (completed matrix) also satisfy these formulae.

3 Injecting Logic Into Factorization

Matrix factorization is capable of learning complex
dependencies between relations, but requires ob-
served facts as training signal. However, we often
either do not have this signal because we are inter-
ested in relations that do not have pre-existing facts,
or this signal is noisy due to alignment errors or mis-
match when linking KB entities to mentions in text.

To overcome the above problem we investigate the
use of first-order logical background knowledge (e.g.
implications) to aid relation extraction. One option is
to rely on a fully symbolic approach that exclusively
uses first-order logic (Bos and Markert, 2005; Baader
et al., 2007; Bos, 2008). In this case incorporating
additional background knowledge is trivial. However,
it is difficult to generalize and deal with noise and
uncertainty in language when relying only on manual
rules. In contrast, matrix factorization methods can
overcome these shortcomings, but it is not clear how
they can be combined with logical formulae.

In this section, we propose to inject formulae into
the embeddings of relations and entity-pairs, i.e., es-
timate the embeddings such that the predictions con-
form to the given logic formulae (see Figure 1 for
an overview). We refer to such embeddings as low-
rank logic embeddings. Akin to matrix factorization,
inference of a fact at test time still amounts to an
efficient dot product of the corresponding relation
and entity-pair embeddings, and logical inference is
not needed. We present two techniques for inject-
ing logical background knowledge, pre-factorization

inference (§3.1) and joint optimization (§3.2), and
demonstrate in subsequent sections that they gen-
eralize better than direct logical inference, even if
such inference is performed on the predictions of the
matrix factorization model.

3.1 Pre-Factorization Inference
Background knowledge in form of first-order formu-
lae can be seen as hints that can be used to generate
additional training data (Abu-Mostafa, 1990). For
pre-factorization inference we first perform logical
inference on the training data and add inferred facts
as additional training facts. For example, for a for-
mula F = 8x, y : r

A

(x, y)) r

B

(x, y), we add an
additional observed cell r

B

(x, y) for any (x, y) for
which r

A

(x, y) is observed in the distant supervision
training data. This is repeated until no further facts
can be inferred. Subsequently, we run matrix factor-
ization on the extended set of observed cells.

The main intuition is that the additional training
data generated by the formulae provides extra evi-
dence of the logical dependencies to the matrix fac-
torization, while at the same time allowing the fac-
torization to generalize to unobserved facts and to
deal with ambiguity and noise in the data. No further
logical inference is performed during or after training
of the matrix factorization model as we expect that
the learned embeddings encode the given formulae.

3.2 Joint Optimization
One drawback of pre-factorization inference is that
the formulae are enforced only on observed atoms,

?

[Thrun 1995, NIPS, Craven 1996, NIPS]



“Knowledge Extraction”

Learn a more interpretable model from distributed 
representations (for interpretation, not for use) 

Neural Networks => if-then rules (Thrun, 95) 

Neural Networks => Decision Trees (Craven, 96) 

Open Questions 

Go beyond classification: joint models 

Use to provide proofs of complex predictions 

Integrate into a dialog between human and machine

68[Sanchez et al. 2015, KRR]
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Abstract

Methods that use latent representations of data, such as matrix
and tensor factorization or deep neural methods, are becoming
increasingly popular for applications such as knowledge base
population and recommendation systems. These approaches
have been shown to be very robust and scalable but, in con-
trast to more symbolic approaches, lack interpretability. This
makes debugging such models difficult, and might result in
users not trusting the predictions of such systems. To over-
come this issue we propose to extract an interpretable proxy
model from a predictive latent variable model. We use a so-
called pedagogical method, where we query our predictive
model to obtain observations needed for learning a descrip-
tive model. We describe two families of (presumably more)
descriptive models, simple logic rules and Bayesian networks,
and show how members of these families provide descriptive
representations of matrix factorization models. Preliminary
experiments on knowledge extraction from text indicate that
even though Bayesian networks may be more faithful to a
matrix factorization model than the logic rules, the latter are
possibly more useful for interpretation and debugging.

1 Introduction
In many successful machine learning models, a set of latent
vectors is learned by means of minimizing an error function
with respect to training data. These include models of matrix
and tensor factorization and neural architectures. One advan-
tage of these models is their scalability: they can be trained
on massive amounts of data and achieve high accuracy, mak-
ing them attractive for many large-scale, real-world tasks
such as Recommender Systems (Koren, Bell, and Volinsky
2009) and Information Extraction (Riedel et al. 2013). An
increasingly desirable property for machine learning systems
is human interpretability, both to (a) explain the model and
its predictions, and (b) to debug possible mistakes. However,
latent representations that use such dense, real-valued vectors
are notoriously difficult to interpret.

One way to address this lack of interpretability is to em-
ploy hybrid symbolic and probabilistic frameworks such as
Markov Logic (Richardson and Domingos 2006) or Bayesian
Logic Programs (Milch et al. 2005), but in practice these of-
ten suffer from limited scalability. Constraints such as those

Copyright c� 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Since the internal representation of latent variable
models (e.g. latent vectors of a matrix factorization model)
are not easy to comprehend by the end-user, we investigate
two simpler but more interpretable proxy models: Bayesian
networks and first-order logic formulae.

imposed in nonnegative matrix factorization make consider-
able steps towards addressing this concern, however they still
lack the interpretability of purely symbolic models in which,
for example, predictions are derived from explicitly stated
rules or from a few features.

In this paper, we still use scalable latent variable mod-
els for prediction, but additionally learn simpler, human-
interpretable descriptive models that can be used to explain
the behavior of these more complex latent models. More con-
cretely, given a latent variable model, we seek to find a more
interpretable proxy model that approximately behaves like
the original model. This problem has been addressed before
in the context of Artificial Neural Networks (Craven and
Shavlik 1996), (Thrun 1995), where a set of logic rules is
extracted from a neural network by either, training on pre-
dictions from the neural network, analyzing its neurons, or
both. The objective of the set of rules learned is to mimic the
behavior of the neural network in order to act as a descriptive
model and provide confidence in the predictions made by
the neural network. To the best of our knowledge, however,
there is no work in knowledge extraction from tensor-based
models; given the wide impact and acceptance of this models,
we consider of big importance to have a descriptive proxy
model that can provide a human-readable description of their

[Sanchez et al. 2015, KRR]
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Extracting Bayesian Networks 
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X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)
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1 0 0 1
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Generate data from embeddings (threshold or sample)

Extracting Bayesian Networks 
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X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 0 1
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Learning a tree shaped Bayesian Network

Extracting Bayesian Networks 
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Benefits of Bayesian Network Trees
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[Sanchez et al. 2015, KRR]

Provide a joint model over all relations  

more compact (than one decision tree per relation) 

more faithful to the joint MF model 

Probabilistic interpretation, captures probabilistic nature of MF 

Very scalable  

Learning: Prim Algorithm to find Maximum Spaning Tree 
over mutual information 

Inference: Belief Propagation in non-loopy graph
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Figure 1: Fidelity of the descriptive models to the
MF model.

of the predictive model. That is, the ranked list
of facts produced by the logical rules matches the
predictions of the MF poorly. This might be due
to their deterministic nature: since their response
is in a binary domain they are not able to provide
a confidence value in [0,1]. This makes it difficult
to capture the ranking behavior of the MF model.

The decision trees provide more sensible confi-
dence scores and hence rankings. This is reflected
in better average precision curves. The BN model
outperforms the other models substantially. We
believe that this is a consequence of its probabilis-
tic formulation, and the ability to capture the joint
nature of the MF model better.

Interpretability We show two examples
of ”explanations” for wrong predictions
as produced by the different descriptive
models. Figure 2a shows the causes for
the MF model to predict the wrong fact
arenaStadium(PhiladelphiaEagles, Canton)
with confidence of 0.885. We see a BN expla-
nation in Figure 2a: the snippet of the BN that
connects observed relations and the prediction.
The observed node, playAt, influences the
next nodes in the trajectory towards the target
node arenaStadium. A clear error of the MF
model is indicated by the connection in the BN:
beatAt ! arenaStadium.

Following the above example, the deci-
sion tree learned specifically for the relation
arenaStadium shows a confidence of 1.0 for the
same fact. The explanation is the rule ifplayAt =
1thenp(arenaStadium = 1) = 1.0. We think
that the interpretability of the decision tree and

(a) predicted: arenaStadium

(b) predicted: reviewMovie

Figure 2: BN learned from MF model shows an
explanation of the causes that elicited two wrong
predictions by the MF model. Bold arrow indi-
cates a wrong conection, bold nodes indicate ob-
served relations.

the BN are quite comparable in this case. By
contrast, the logical system does not even pre-
dict this fact as it missed the playAt(x, y) )
arenaStadium(x, y) implication.

In Figure 2b we can see
the explanation of why the fact
reviewMovie(DanielKahneman,Nobel)
was predicted by the MF model as true. Given
that this text pattern is not a target Freebase
relation, no decision tree was learned for it, so no
explanation from this model can be sought. On
the other side, in the set of logic rules none of
the observed neither the target pattern appeared,
meaning that their statistical dependence with
respect to other patterns was really low.

6 Conclusion

The problem of finding interpretable descriptive
models for high-performance latent variable mod-
els has been discussed before, but we believe it is
time for the community to revisit it. The reasons
are both the recent successes of latent variable
models, and the increasing complexity of the tasks
they address. In particular, in this work we looked
at matrix factorization models for knowledge base
population, a more complex task than the classifi-
cation problems considered in existing literature.
As the starting point we proposed three descrip-
tive representations: implication logic rules, de-
cision trees and Bayesian network trees—a repre-
sentation that has not been previously considered.
We found that Bayesian Network trees provide a
very competitve combination of fidelity and inter-
pretability.



A “Proof”

Model observed  
playAt(Eagles, Canton) 

Model wrongly predicted  
arenaStadium(Eagles, Canton) 

The Bayesian Network can provide this “proof”
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Figure 1: Fidelity of the descriptive models to the
MF model.

of the predictive model. That is, the ranked list
of facts produced by the logical rules matches the
predictions of the MF poorly. This might be due
to their deterministic nature: since their response
is in a binary domain they are not able to provide
a confidence value in [0,1]. This makes it difficult
to capture the ranking behavior of the MF model.

The decision trees provide more sensible confi-
dence scores and hence rankings. This is reflected
in better average precision curves. The BN model
outperforms the other models substantially. We
believe that this is a consequence of its probabilis-
tic formulation, and the ability to capture the joint
nature of the MF model better.

Interpretability We show two examples
of ”explanations” for wrong predictions
as produced by the different descriptive
models. Figure 2a shows the causes for
the MF model to predict the wrong fact
arenaStadium(PhiladelphiaEagles, Canton)
with confidence of 0.885. We see a BN expla-
nation in Figure 2a: the snippet of the BN that
connects observed relations and the prediction.
The observed node, playAt, influences the
next nodes in the trajectory towards the target
node arenaStadium. A clear error of the MF
model is indicated by the connection in the BN:
beatAt ! arenaStadium.

Following the above example, the deci-
sion tree learned specifically for the relation
arenaStadium shows a confidence of 1.0 for the
same fact. The explanation is the rule ifplayAt =
1thenp(arenaStadium = 1) = 1.0. We think
that the interpretability of the decision tree and

arenaStadium 

 

playAt defeatAt beatAt 

(a) predicted: arenaStadium

(b) predicted: reviewMovie

Figure 2: BN learned from MF model shows an
explanation of the causes that elicited two wrong
predictions by the MF model. Bold arrow indi-
cates a wrong conection, bold nodes indicate ob-
served relations.

the BN are quite comparable in this case. By
contrast, the logical system does not even pre-
dict this fact as it missed the playAt(x, y) )
arenaStadium(x, y) implication.

In Figure 2b we can see
the explanation of why the fact
reviewMovie(DanielKahneman,Nobel)
was predicted by the MF model as true. Given
that this text pattern is not a target Freebase
relation, no decision tree was learned for it, so no
explanation from this model can be sought. On
the other side, in the set of logic rules none of
the observed neither the target pattern appeared,
meaning that their statistical dependence with
respect to other patterns was really low.

6 Conclusion

The problem of finding interpretable descriptive
models for high-performance latent variable mod-
els has been discussed before, but we believe it is
time for the community to revisit it. The reasons
are both the recent successes of latent variable
models, and the increasing complexity of the tasks
they address. In particular, in this work we looked
at matrix factorization models for knowledge base
population, a more complex task than the classifi-
cation problems considered in existing literature.
As the starting point we proposed three descrip-
tive representations: implication logic rules, de-
cision trees and Bayesian network trees—a repre-
sentation that has not been previously considered.
We found that Bayesian Network trees provide a
very competitve combination of fidelity and inter-
pretability.

Todo: evaluate this in a downstream “debugging” task



Summary

Do semantics in a probabilistic relational reasoner 

Reasoner: matrix/tensor factorization (or other LV models) 

Models itself don’t need to be interpretable if we know … 

… how to Interact with uninterpretable models  

inject explanations and logical rules 

Approach: optimize embeddings to fulfil formulae 

extract explanations 

for example: by using an interpretable BN proxy model 
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Thanks
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Training



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1

1 1

1

Usually unavailable or sparse, so...

Negative Data
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1 0

1 1

1

…subsample, which can work...

Negative Data
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1

0 1 1

1

but often does not 

Negative Data
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

0 1 1 0 1

1 1 0 0

0 1 0 1

1 0 0

and you need to sample a lot (wasting resources)

Negative Data
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User 1 User 2 User 3 User 4 User 5

1 1 1

1 1

1 1

1

Often users only click/view/buy items, or not, but no rating

Implicit Feedback 
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

0.9 1

0.95 1 1

1

for all (observed,not observed) pairs in column: prob(o) > prob(n) 

[Rendle et al.,09]

Ranking
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

0.9 1

0.85 1 1

1

for all (observed,not observed) pairs in a column: prob(o) > prob(n) 

[Rendle et al.,09]

Ranking
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1

1 1

1

Sample observed fact... 

[Rendle et al.,09]

Training: Stochastic Gradient Descent
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1

1 1

1

Sample unobserved cell for same relation 

[Rendle et al.,09]

Training: Stochastic Gradient Descent

87



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

0.8 1 1

1 1

1 1

1 0.9

Estimate current beliefs and gradient, update parameters accordingly

[Rendle et al.,09]

Training: Stochastic Gradient Descent
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

0.85 1 1

1 1

1 1

1 0.8

Estimate current beliefs and gradient, update parameters accordingly

[Rendle et al.,09]

Training: Stochastic Gradient Descent
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How can we do this?

90

1

1
1

1
1

native-of bornIn’s birthplace livesIn

1

birthplace(x,y) => bornIn(x,y)

?



Overview: Embeddings and …

Learning from Data  
[NAACL 2013]

⇥sigmoid?Data

⇥sigmoid

“lecturers are employees!”

?

KB

8x, y : #2-unit-of-#1(x, y) ) organization/parent/child(x, y)
Example: “Boeing and the Sikorsky Aircraft#2 unit of the United Technologies Corporation#1 were selected [...]”
8x, y : #1-city-in-#2(x, y) ) location/containedby(x, y)
Example: “With 900,000 people, San Jose#1 is the third-largest city in California#2, [...]”

|R|

|P|

k

|P| |R|

k

|R|

|P|

Evidence Sparse Training Matrix Low-rank Logic Embeddings Completed Matrix

Facts

First-order
Formulae

Figure 1: Injecting Logic into Matrix Factorization: Given a sparse binary matrix consisting of observed facts over
entity-pairs P and predicates/relations R, matrix factorization is used to learn k-dimensional relation and entity-pair
embeddings that approximate the observed matrix. In this paper we use additional first-order logic formulae over
entities and relations to learn the embeddings such that the predictions (completed matrix) also satisfy these formulae.

3 Injecting Logic Into Factorization

Matrix factorization is capable of learning complex
dependencies between relations, but requires ob-
served facts as training signal. However, we often
either do not have this signal because we are inter-
ested in relations that do not have pre-existing facts,
or this signal is noisy due to alignment errors or mis-
match when linking KB entities to mentions in text.

To overcome the above problem we investigate the
use of first-order logical background knowledge (e.g.
implications) to aid relation extraction. One option is
to rely on a fully symbolic approach that exclusively
uses first-order logic (Bos and Markert, 2005; Baader
et al., 2007; Bos, 2008). In this case incorporating
additional background knowledge is trivial. However,
it is difficult to generalize and deal with noise and
uncertainty in language when relying only on manual
rules. In contrast, matrix factorization methods can
overcome these shortcomings, but it is not clear how
they can be combined with logical formulae.

In this section, we propose to inject formulae into
the embeddings of relations and entity-pairs, i.e., es-
timate the embeddings such that the predictions con-
form to the given logic formulae (see Figure 1 for
an overview). We refer to such embeddings as low-
rank logic embeddings. Akin to matrix factorization,
inference of a fact at test time still amounts to an
efficient dot product of the corresponding relation
and entity-pair embeddings, and logical inference is
not needed. We present two techniques for inject-
ing logical background knowledge, pre-factorization

inference (§3.1) and joint optimization (§3.2), and
demonstrate in subsequent sections that they gen-
eralize better than direct logical inference, even if
such inference is performed on the predictions of the
matrix factorization model.

3.1 Pre-Factorization Inference
Background knowledge in form of first-order formu-
lae can be seen as hints that can be used to generate
additional training data (Abu-Mostafa, 1990). For
pre-factorization inference we first perform logical
inference on the training data and add inferred facts
as additional training facts. For example, for a for-
mula F = 8x, y : r

A

(x, y)) r

B

(x, y), we add an
additional observed cell r

B

(x, y) for any (x, y) for
which r

A

(x, y) is observed in the distant supervision
training data. This is repeated until no further facts
can be inferred. Subsequently, we run matrix factor-
ization on the extended set of observed cells.

The main intuition is that the additional training
data generated by the formulae provides extra evi-
dence of the logical dependencies to the matrix fac-
torization, while at the same time allowing the fac-
torization to generalize to unobserved facts and to
deal with ambiguity and noise in the data. No further
logical inference is performed during or after training
of the matrix factorization model as we expect that
the learned embeddings encode the given formulae.

3.2 Joint Optimization
One drawback of pre-factorization inference is that
the formulae are enforced only on observed atoms,

Injecting Knowledge 
[SP 2014, NAACL 2015]

⇥sigmoid

“lecturers are employees?”

KB

8x, y : #2-unit-of-#1(x, y) ) organization/parent/child(x, y)
Example: “Boeing and the Sikorsky Aircraft#2 unit of the United Technologies Corporation#1 were selected [...]”
8x, y : #1-city-in-#2(x, y) ) location/containedby(x, y)
Example: “With 900,000 people, San Jose#1 is the third-largest city in California#2, [...]”
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Figure 1: Injecting Logic into Matrix Factorization: Given a sparse binary matrix consisting of observed facts over
entity-pairs P and predicates/relations R, matrix factorization is used to learn k-dimensional relation and entity-pair
embeddings that approximate the observed matrix. In this paper we use additional first-order logic formulae over
entities and relations to learn the embeddings such that the predictions (completed matrix) also satisfy these formulae.

3 Injecting Logic Into Factorization

Matrix factorization is capable of learning complex
dependencies between relations, but requires ob-
served facts as training signal. However, we often
either do not have this signal because we are inter-
ested in relations that do not have pre-existing facts,
or this signal is noisy due to alignment errors or mis-
match when linking KB entities to mentions in text.

To overcome the above problem we investigate the
use of first-order logical background knowledge (e.g.
implications) to aid relation extraction. One option is
to rely on a fully symbolic approach that exclusively
uses first-order logic (Bos and Markert, 2005; Baader
et al., 2007; Bos, 2008). In this case incorporating
additional background knowledge is trivial. However,
it is difficult to generalize and deal with noise and
uncertainty in language when relying only on manual
rules. In contrast, matrix factorization methods can
overcome these shortcomings, but it is not clear how
they can be combined with logical formulae.

In this section, we propose to inject formulae into
the embeddings of relations and entity-pairs, i.e., es-
timate the embeddings such that the predictions con-
form to the given logic formulae (see Figure 1 for
an overview). We refer to such embeddings as low-
rank logic embeddings. Akin to matrix factorization,
inference of a fact at test time still amounts to an
efficient dot product of the corresponding relation
and entity-pair embeddings, and logical inference is
not needed. We present two techniques for inject-
ing logical background knowledge, pre-factorization

inference (§3.1) and joint optimization (§3.2), and
demonstrate in subsequent sections that they gen-
eralize better than direct logical inference, even if
such inference is performed on the predictions of the
matrix factorization model.

3.1 Pre-Factorization Inference
Background knowledge in form of first-order formu-
lae can be seen as hints that can be used to generate
additional training data (Abu-Mostafa, 1990). For
pre-factorization inference we first perform logical
inference on the training data and add inferred facts
as additional training facts. For example, for a for-
mula F = 8x, y : r

A

(x, y)) r

B

(x, y), we add an
additional observed cell r

B

(x, y) for any (x, y) for
which r

A

(x, y) is observed in the distant supervision
training data. This is repeated until no further facts
can be inferred. Subsequently, we run matrix factor-
ization on the extended set of observed cells.

The main intuition is that the additional training
data generated by the formulae provides extra evi-
dence of the logical dependencies to the matrix fac-
torization, while at the same time allowing the fac-
torization to generalize to unobserved facts and to
deal with ambiguity and noise in the data. No further
logical inference is performed during or after training
of the matrix factorization model as we expect that
the learned embeddings encode the given formulae.

3.2 Joint Optimization
One drawback of pre-factorization inference is that
the formulae are enforced only on observed atoms,

Extracting Knowledge 
[KRR 2015]

?

“Talking to Uninterpretable Models”


