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Machine Reading

“Who works in London and H
is interested in NLP? in(UCL, London) ;
, Relational DB
interest (x,NLP), interest(Seb,NLP) :
worksFor(x,y), :
in(y,London) .
worksFor(Seb,UCL) :

[Kwiatkowski et al., 2013] *
Narrow domain-specific schema [Mintz et al., 2009] +
Semantics :

Statistical NLP

Syntax Coreference

v

"Sebastian Riedel works in the area of NLP and is now Lecturer at UCL"



Machine Reading

[Riedel et al., 2013]

A
in(UCL,London)
“Who works in London and | "erks-in-area-of(SebNLF)
is interested in NLP? tecturer-at(SebUCL
Relational DB
interest (x,NLP),
worksFor(x,y),
in(y,London)
Semantics
Wide universal schema -------------"--~---~---"---"-----.
Syntax Coreference Statistical NLP
v

"Sebastian Riedel works in the area of NLP and is now Lecturer at UCL"



Semantics as Reasoning

[Riedel et al., 2013]

A
in(UCL,London) ,
“Who works in London and | "erks-in-area-of(SebNLF)
is interested in NLP? Lecturer-at(Seb UCL)
worksFor(X,y): o _
interest (x,NLP), faculty-at(X,y) Statistical Relational

worksFor (x,y), '
in(y,London) interest(x,y):

Learner and Reasoner
works-in-area-of (x,y)[0.9] :

faculty-at(x,y):
lecturer-at (X,y)

Wide universal schema =---------=====ecaaaaaacacmnx.

Syntax Coreference Statistical NLP

"Sebastian Riedel works in the area of NLP and is now Lecturer at UCL"



Benefit: Transitive Reasoning

A
in(UCL,London) ,
“Who works in London and | "erks-in-area-of(SebNLF)
is interested in NLP? Lecturer-at(Seb UCL)
worksFor(X,y): o _
interest (x,NLP), faculty-at(X,y) Statistical Relational

worksFor (x,v), '
in(y,London) interest(x,y):

Learner and Reasoner
works-in-area-of (x,y)[0.9] :

faculty-at(x,y):
lecturer-at (x,y)

Wide universal schema =---------=====ecaaaaaacacmnx.

Syntax Coreference Statistical NLP

"Sebastian Riedel works in the area of NLP and is now Lecturer at UCL"



Benefit: More Coverage

A
in(UCL,London) ,
“Who is faculty in London works-in-area-o£(Seb,NLF)
and interested in NLP? Lecturer-at(Seb,UCL)
worksFor(X,y): o _
interest (x,NLP), faculty-at (X,y) Statistical Relational

worksFor (x,v), '
in(y,London) interest(x,y):

Learner and Reasoner
works-in-area-of (x,y)[0.9] :

faculty-at(x,y):
lecturer-at (x,y)

Wide universal schema

Syntax Coreference Statistical NLP

"Sebastian Riedel works in the area of NLP and is now Lecturer at UCL"



Benefit: Code Reuse

in(UCL,London)
works-in-area-of(Seb,NLP)
lecturer-at(Seb,UCL)

“Who lives in London

and is interested in NLP?
worksFor(X,y):

interest (x,NLP), faculty-at(X.y) Statistical Relational

worksFor(x,y), , , Learner and Reasoner
in(y,London) interest(x,y). :

works-in-area-of (x,y)[0.9]

livesIn(x,z):
worksFor (X,y), [Lao et al., 2011]
locatedIn(y,z) [0.6]

Wide universal schema

Syntax Coreference Statistical NLP

"Sebastian Riedel works in the area of NLP and is now Lecturer at UCL"



Joint Inference

A
in(UCL,London) ,
“Who lives in London works-in-area-of(Seb,NLP)
and is interested in NLP? lecturer-at(Seb,UCL)
worksFor(X,y): . . .
interest (x,NLP), faculty-at (X,y) Statistical Relational
worksFor(x,y), , Learner and Reasoner
in(y,London) interest(x,y): :
works-in-area-of (X,y)[0.9]
livesIn(x,z):
worksFor (X,y),
locatedIn(y,z) [0.6]
Wide universal schema
Syntax Coreference Statistical NLP
v

"Sebastian Riedel works in the area of NLP and is now Lecturer at UCL"



Reasoner and Learner

Statistical Relational
Learner and Reasoner

?

10



Probabilistic Logics

Use (weighted) logics to define graphical models

lecturer-at prof-at works-for

Examples

»Markov Logic
[Richardson and Domingos, 2006]

» Bayesian Logic
Programs
[Kersting , 2007]
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Probabilistic Logics

Use (weighted) logics to define graphical models

lecturer-at prof-at works-for

UCL Problems
> Inference
»Rule Learning
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Matrix Factorization

Think of database as a matrix or tensor

lecturer-at prof-at works-for

1T 1
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Matrix Factorization

Embed entity (pairs) in low dimensional vector spaces

lecturer-at prof-at works-for

1T 1
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Matrix Factorization

Embed relations in low dimensional vector spaces

lecturer-at prof-at works-for

? ? ?
? ? ?
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Matrix Factorization

Find a matrix-matrix product that approximates observed DB

lecturer-at prof-at works-for

? ? ?

o 9 ?
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Matrix Factorization

Or a non-linear function of this product

17



Matrix Factorization

Low rank forces some 0 cells to become non-zero => prediction

[Nickel, Bordes, ...]
18



Overview

Data 2N sigmoid X:| » Matrix Factorization
' Models

“Talking to Reading Machines”

> sigmoid x: > Injecting Knowledge

“lecturers are employees!”

SX) < sigmoid X:I » Extracting Knowledge

‘lecturers are employees?”

19



Universal Schema Matrix

Schema contains structured and unstructured (~OpenlE) relations

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1
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Goal: Learn to Complete

Schema contains structured and unstructured (~OpenlE) relations

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1

21



Model N: Baseline Classifier

[Mintz et al 2009,...]

Standard supervised relation extractor ...

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

el 1

QO training data

P(Yers, = 1] )
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Model N: Classifier

[Mintz et al 2009,...]

Standard supervised relation extractor ...

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

@ —@)

@ observed
QO training data

PYerinp = ey )

23



Model N: Classifier

[Mintz et al 2009,...]

Standard supervised relation extractor ...

~ BN
oY

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

@ observed @
QO training data .

(O parameter

p(ygjfr?p — 1|fgr;1yp7 Wemp)
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Model N: Classifier

[Mintz et al 2009,...]

Standard supervised relation extractor ...

oY

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

T

@ observed @
QO training data

(O parameter

P(Yernp = femps Wemp) o< exp[< foi,, Wemp >
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Model N: Classifier

... for each pattern

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

oy e
|

@ observed @
QO training data

(O parameter

p(y;‘gf — 1‘ prof7 WPTOf) X exp[< £, rof’ Wprof >]
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Model F: Latent Feature (Factorization)

[Collins et al, 2001]

Model the probability of a pair (x,y) being in relation “prof”

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

Bl e e

QO training data

(O parameter

p(ygﬁgf = 1[v"Y Wprof) o¢ exp[< v&Y wpor >

27



Model F: Latent Feature (Factorization)

[Collins et al, 2001]

Per tuple latent feature vector

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

BB e ©

QO training data

(O parameter

p(ygﬁgf = 1v"Y Wprof) o< exp[< v5Y wior >
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Model F: Latent Feature (Factorization)

[Collins et al, 2001]

Per tuple latent feature vector

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

BB e e

QO training data

(O parameter

p(ygﬁgf = 1[v"Y Wprof) o¢ exp[< v&Y wpor >
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Model F: Latent Feature (Factorization)

[Collins et al, 2001]

Per tuple latent feature vector

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

+
o @ o

A

QO training data

(O parameter

p(ygﬁgf = 1[v"Y Wprof) o¢ exp[< v&Y wpor >

= sigmoid (< v¥Y Wy >)
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Model F: Latent Feature (Factorization)

Transitive Reasoning

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

O )
®

ONONO

@ |
© O
O O O
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Model F: Latent Feature (Factorization)

Transitive Reasoning

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

O ©
© - /©
Oyan0

O @ ©
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Model F: Latent Feature (Factorization)

Transitive Reasoning

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

o)
©

O @ ©



Model F: Latent Feature (Factorization)

Transitive Reasoning

X-is-historian-at-Y  X-is-profes t-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

@
©

O @ ©
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Model F: Latent Feature (Factorization)

Transitive Reasoning

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

@_
O)
O
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Model F: Latent Feature (Factorization)

Transitive Reasoning

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

® ®
oG |
@ | - - @
—® o

5O G
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Model F: Latent Feature (Factorization)

Transitive Reasoning

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

O
© - O

ONCIC
-
@\:
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Model F: Latent Feature (Factorization)

Bootstrapping without fantasy

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

O Q)
© ERG:
| ) |
(w) (w)

O @ ©
O 6 6
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Model E: Selectional Preferences

Relations have entity type restriction

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

PG
(&, &)
(&, A
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Model E: Selectional Preferences

Relations have entity type restriction

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

PG
(&, &)
@D 0 0 0
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Model E: Selectional Preferences

Argument Slot 1 weight vector ...

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

<&@> o

p(ypte =1]...) xexp[< v¥, Wi op > 4+ < vV, Wl ¢ >]



Model E: Selectional Preferences

... dot-product with feature vector of entity 1

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

<&@> o

1

p(yprof T 1‘ ) X eXp[< ‘_fxv Wprof >+ < Vy7 WIQ)rof >]
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Model E: Selectional Preferences

Argument Slot 2 weight vector ...

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

:
@a% O3 ®
ON

p(ypte =1]...) xexp[< v¥, Wi op >+ < vV, w2 >
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Model E: Selectional Preferences

... dot-product with feature vector of entity 2

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

<&@> o

p(yprof T 1‘ ) X eXp[< Vx? ng)rof >+ < Yya Wprof >]



Combinations

models capture different aspects of the data, combine them (e.g., NF)

p(ygjr’r:lyp — 1‘ " ) X eXp[< fewr;lypa WeNmp >+ < Vm,y) ngp >]
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Evaluation (Structured)

[Mintz 09; Yao 11; Surdenau 12]

Evaluate average precision per Freebase relation.

Relation MIO09 YA11 SuU12 N+F+E

employee 0.67 0.64 0.7 0.79

containedby 0.48 0.51 0.54 0.69

PETETE Y ~45 minutes to train our models on —
4000 relations, ~50k entity pairs

Weighted MAP 048 052 057  0.69

MAP 0.32 0.42 0.56 0.63
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Injecting Knowledge

O
7N Sl —

“lecturers are employees!”
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Injecting Knowledge

“a liquid turns into a solid
when its temperature is
lowered below its freezing point

48



Injecting Knowledge: Rules

vX,y: birthplace(x,y) o
= bornln(x,y) ’ sigmoid 8 |:|

49



Goal: Predict Unseen Cells ...

native-of ’s birthplace bornIn livesIn

50



... By Using Rules and Data

native-of ’s birthplace borniIn livesIn

vX,y: birthplace(x,y) = bornin(x,y)

51



Baselines

native-of ’s birthplace borniIn livesIn

Rules only
Rules after learning
Rules before learning

O

vX,y: birthplace(x,y) = bornin(x,y)

52



Pre-Injection may not add data at all

native-of ’s birthplace borniIn livesIn

O Rules before learning

vX,y: birthplace(x,y) = bornin(x,y)

53



Pre-Injection may not add data at all

native-of ’s birthplace borniIn livesIn

1 1
1

1 O Rules before learning

vX,y: birthplace(x,y) = bornin(x,y)

54



Idea: lterate

native-of ’s birthplace bornIn livesIn

@ Inference with model
O Apply rules

... and learn again

vX,y: birthplace(x,y) = bornin(x,y)

55



Our approach

[Rocktaeschel et al 15]

> Directly optimise to fulfil formulae in expectation
» formulae have compositional expectations
EV,W[birthplace(Seb,HH N=E, wl y,f;lj,ﬁfce] = sigm(< v birthplace >)
E, [r(X,,X,)]=sigm(< v W >)
E, [AAB]=E, [A]IXE, [B]
E -Al=1-E, [A]

E, [A= Bl=1-(E, [A]x(1-E,,[B])
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Our approach

[Rocktaeschel et al 15]

> Directly optimise to fulfil formulae in expectation
» formulae have compositional expectations

> quantification through grounding

E, [Vxf(O)l=E, [f(X)A...A f(X,)]
=E,  [f(X)IX..XE [f(X,)]

57



General Framework

> Find embeddings v and w that...

> Maximize log expectation of a set of formulae f

argmax, ,, 2, log(E, , [f])

> Generalizes regular (binary) matrix factorization
with logistic loss

> Get gradients by back-propagation through
log(E[.]) tree

> Optimize via SGD / Adagrad etc.

58



Experiments

[Rocktaeschel et al 15]

» “Zero-shot” learning

» GGiven: a lot of surface form data, but no Freebase
relations

» Goal: given few (36) Freebase rules, learn to Freebase
relations

59



Experiments: Zero-Shot Learning

Remove Freebase data from training set ...

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1

60



Experiments: Zero-Shot Learning

and learn only from surface form relations, and rules

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1

61



Zero-Shot Learning Results (MAP)

[Rocktaeschel et al 15]

60

45

30

15

Only Rules Rules Post Rules Pre Joint
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Learning Curve

[Rocktaeschel et al 15]

0.6 ,;L:x‘--‘i%

Xy = XN/ *%
x 'ﬁ\l/ﬁ
P T x
o
<
=
=
MF —+— ||
Joint — % —
Pre ]
Post - -x - |]
y Iy M M M M M M M M M M | ¥ ¥ ¥
0 0.1 0.2 0.3 0.4 0.5

Fraction of Freebase training facts
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Generating Data?

native-of ’s birthplace borniIn livesIn

Hasn't worked yet

» Row embeddings
overtrain

> At test time premise
appears with other
relations

64



Challenge 1: Injecting Symbolic Rules

O

“lecturers are employees!” > sigmoid |:| X :l

65



Challenge 2: Extracting Explanations

O

“lecturers are employees!” < sigmoid X |:|
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Challenge 2: Extracting Explanations

O

“I returned Sebastian ? sigmoid X |:|

because we know he is a lecturer
at UCL, which is in London,
so he most likely lives in London

[Thrun 1995, NIPS, Craven 1996, NIPS]
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“Knowledge Extraction”

Learn a more interpretable model from distributed
representations (for interpretation, not for use)

Neural Networks => if-then rules (Thrun, 95)
Neural Networks => Decision Trees (Craven, 96)
> Open Questions
> Go beyond classification: joint models
> Use to provide proofs of complex predictions

> Integrate into a dialog between human and machine

68



Explaining Matrix Factorization

[Sanchez et al. 2015, KRR]

Data Matrix Factorization Bayesian Network User

(n,
R k - @ @

Pl
HEEN I_\ First-order Logic

Q

Vp r1(p :> ro(p
‘v’p ro(p) = 7“4
\le T3 (p) = 7“4
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Extracting Bayesian Networks

Learn Embeddings from Data

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1
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Extracting Bayesian Networks

Generate data from embeddings (threshold or sample)

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 0 1
0 0 1
0 1 1
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Extracting Bayesian Networks

Learning a tree shaped Bayesian Network

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 0 1
0 0 1




Benefits of Bayesian Network Trees

Provide a joint model over all relations

more compact (than one decision tree per relation)

more faithful to the joint MF model
Probabilistic interpretation, captures probabilistic nature of MF
Very scalable

Learning: Prim Algorithm to find Maximum Spaning Tree
over mutual information

Inference: Belief Propagation in non-loopy graph

73



Faithfulness

Precision

0.8

0.6

0.4

0.2

Averaged 11-point Precision/Recall

Bayesian network tree =

Logic rules =
ISION trees =——jém

Recall
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A “Proof”

» Model observed
playAt(Eagles, Canton)

» Model wrongly predicted
arenaStadium(Eagles, Canton)

» The Bayesian Network can provide this “proof”

» Todo: evaluate this in a downstream “debugging” task

75



Summary

Do semantics in a probabilistic relational reasoner
Reasoner: matrix/tensor factorization (or other LV models)
Models itself don’t need to be interpretable if we know ...

... how to Interact with uninterpretable models

inject explanations and logical rules

Approach: optimize embeddings to fulfil formulae

extract explanations

for example: by using an interpretable BN proxy model

/6



Thanks
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Training



Negative Data

Usually unavailable or sparse, so...

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

79



Negative Data

...subsample, which can work...

X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
1 1 0
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Negative Data

but often does not

X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
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Negative Data

and you need to sample a lot (wasting resources)

X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

0 1 1 0 1
1 1 0 0
0 1 0 1
1 0

82



Implicit Feedback

Often users only click/view/buy items, or not, but no rating

User 1 User 2 User 3 User 4 User 5

1 1 1
1 1

Item 1

ltem 2

- N
- N
—
ltem 4 ltem 3

83



Ranking

[Rendle et al.,09]

for all (observed,not observed) pairs in column: prob(o) > prob(n)

X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
0.9 1

0.95 1 1
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Ranking

[Rendle et al.,09]

for all (observed,not observed) pairs in a column: prob(o) > prob(n)

X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
0.9 1

0.85 1 1
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Training: Stochastic Gradient Descent

[Rendle et al.,09]

Sample observed fact...

X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1

86



Training: Stochastic Gradient Descent

[Rendle et al.,09]

Sample unobserved cell for same relation

X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1
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Training: Stochastic Gradient Descent

[Rendle et al.,09]

Estimate current beliefs and gradient, update parameters accordingly

X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1
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Training: Stochastic Gradient Descent

[Rendle et al.,09]

Estimate current beliefs and gradient, update parameters accordingly

X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1

89



How can we do this?

native-of ’s birthplace bornIn livesIn

birthplace(x,y) => bornin(x,y)

90



Overview: Embeddings and ...

- » Learning from Data
Data ? sigmoid X
> g ] INAACL 2013]

“Talking to Uninterpretable Models”

% > sigmod X:l > Injecting Knowledge

[SP 2014, NAACL 20195]

“lecturers are employees!”

> sigmoid » Extracting Knowledge
T <pm| ] Bt

‘lecturers are employees?”




