
KB

8x, y : #2-unit-of-#1(x, y)) organization/parent/child(x, y)
Example: “Boeing and the Sikorsky Aircraft#2 unit of the United Technologies Corporation#1 were selected [...]”
8x, y : #1-city-in-#2(x, y)) location/containedby(x, y)
Example: “With 900,000 people, San Jose#1 is the third-largest city in California#2, [...]”

|R|

|P|

k

|P| |R|

k

|R|

|P|

Evidence Sparse Training Matrix Low-rank Logic Embeddings Completed Matrix

Facts

First-order
Formulae

Figure 1: Injecting Logic into Matrix Factorization: Given a sparse binary matrix consisting of observed facts over
entity-pairs P and predicates/relations R, matrix factorization is used to learn k-dimensional relation and entity-pair
embeddings that approximate the observed matrix. In this paper we use additional first-order logic formulae over
entities and relations to learn the embeddings such that the predictions (completed matrix) also satisfy these formulae.

3 Injecting Logic Into Factorization

Matrix factorization is capable of learning complex
dependencies between relations, but requires ob-
served facts as training signal. However, we often
either do not have this signal because we are inter-
ested in relations that do not have pre-existing facts,
or this signal is noisy due to alignment errors or mis-
match when linking KB entities to mentions in text.

To overcome the above problem we investigate the
use of first-order logical background knowledge (e.g.
implications) to aid relation extraction. One option is
to rely on a fully symbolic approach that exclusively
uses first-order logic (Bos and Markert, 2005; Baader
et al., 2007; Bos, 2008). In this case incorporating
additional background knowledge is trivial. However,
it is difficult to generalize and deal with noise and
uncertainty in language when relying only on manual
rules. In contrast, matrix factorization methods can
overcome these shortcomings, but it is not clear how
they can be combined with logical formulae.

In this section, we propose to inject formulae into
the embeddings of relations and entity-pairs, i.e., es-
timate the embeddings such that the predictions con-
form to the given logic formulae (see Figure 1 for
an overview). We refer to such embeddings as low-
rank logic embeddings. Akin to matrix factorization,
inference of a fact at test time still amounts to an
efficient dot product of the corresponding relation
and entity-pair embeddings, and logical inference is
not needed. We present two techniques for inject-
ing logical background knowledge, pre-factorization

inference (§3.1) and joint optimization (§3.2), and
demonstrate in subsequent sections that they gen-
eralize better than direct logical inference, even if
such inference is performed on the predictions of the
matrix factorization model.

3.1 Pre-Factorization Inference
Background knowledge in form of first-order formu-
lae can be seen as hints that can be used to generate
additional training data (Abu-Mostafa, 1990). For
pre-factorization inference we first perform logical
inference on the training data and add inferred facts
as additional training facts. For example, for a for-
mula F = 8x, y : r

A

(x, y)) r

B

(x, y), we add an
additional observed cell r

B

(x, y) for any (x, y) for
which r

A

(x, y) is observed in the distant supervision
training data. This is repeated until no further facts
can be inferred. Subsequently, we run matrix factor-
ization on the extended set of observed cells.

The main intuition is that the additional training
data generated by the formulae provides extra evi-
dence of the logical dependencies to the matrix fac-
torization, while at the same time allowing the fac-
torization to generalize to unobserved facts and to
deal with ambiguity and noise in the data. No further
logical inference is performed during or after training
of the matrix factorization model as we expect that
the learned embeddings encode the given formulae.

3.2 Joint Optimization
One drawback of pre-factorization inference is that
the formulae are enforced only on observed atoms,

