A Comparison of Human and Machine Estimation of Speaker Age

Mark Huckvale & Aimee Webb Speech, Hearing & Phonetic Sciences University College London

Speaker Profiling

Determining characteristics of speaker from an audio recording

- Gender, Region, Social Class
- Age, Height, Weight
- Health, Fatigue, Stress, Emotional state

Applications in

- Forensics
- Marketing
- Adaptation of Speech Technologies

This study

Objectives

- Prediction of age of speaker from recording
- How good are human listeners?
- How good are machines?

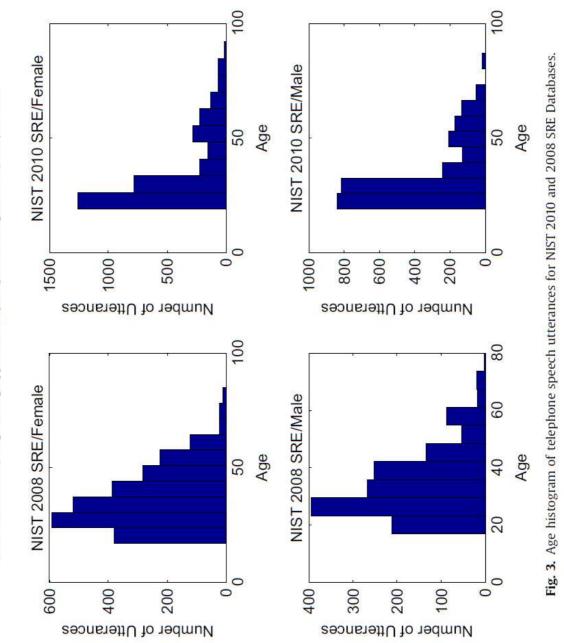
Method

- Use same recordings for humans and machines
- Use same objective measure of success:

Mean Absolute Error (MAE)

"how close is the average estimate to the actual age?"

Previous studies of Human Listeners

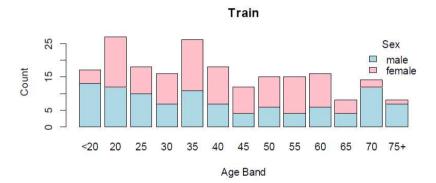

Table 1. Previous studies on human listener age estimation

Study	MAE (yr)	Notes
Braun et al, 1999 [4]	10.5	German speakers & listeners
Braun et al, 1999 [4]	8.5	Italian speakers & listeners
Krauss et al, 2002 [5]	7.1	Limited age-range
Amilon et al, 2009 [6]	9.7	
Moyse et al, 2014 [7]	10.8	

Previous studies of Machine Listeners

Table 2. Previous studies on machine age estimation

Study	MAE (yr)	Notes
Bocklet et al, 2008 [10]	0.8	Children 7-10 yrs
Feld et al, 2009 [11]	7.2-12.8	Same & cross-language
Doby et al, 2011 [12]	9.29-10.00	Depending on gender
Bahari et al, 2011 [13]	7.48	Null model $= 8.88$
Bahari et al, 2012 [14]	7.9	
Bahari et al, 2014 [8]	6.08	Null model = 10.3


Speech Corpus

Accents of the British Isles 2 Corpus

- > 262 speakers
- I 3 accent areas of the British Isles
- Read passage (median duration = 39.2s)
- Wide bandwidth audio of good quality, recorded using a close-talking microphone at 22050 samples/sec.

Test Set

- 52 speakers
- Equal representation of men and women for all 5-year age bands between 15 and 80
- Training Set
 - Other 210 speakers

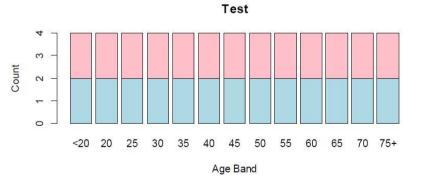
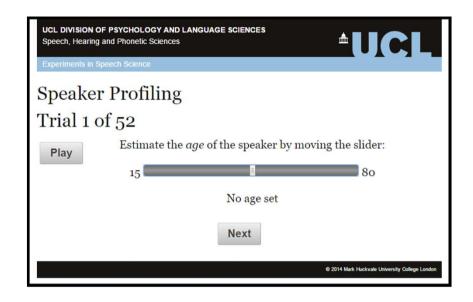
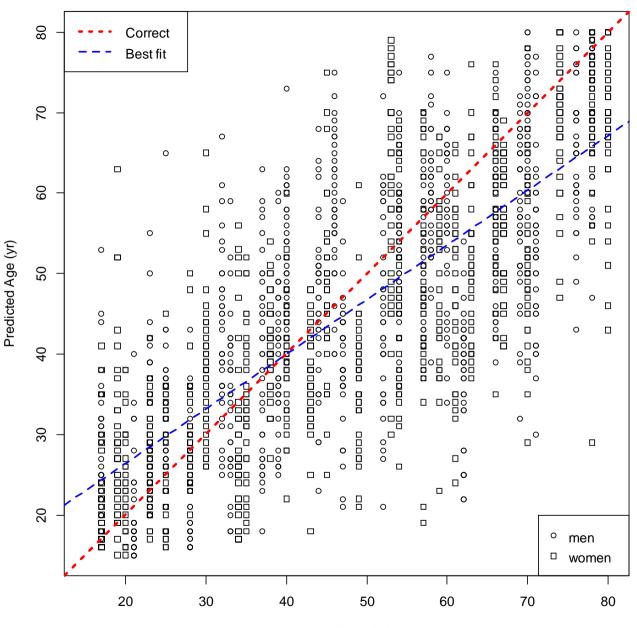



Fig. 1. Age and gender distribution for the train and test sets.

Listening Experiment

Web experiment


- Listen as much as wanted
- Specify age using slider
- Range: 15-80

36 British English listeners

Num- ber	20-29	30-39	40-49	50-59	60-69
Male	4	4	3	3	2
Female	5	4	3	6	2

Table 3. Distribution of listeners by age and gender

Actual Age (yr)

Human Listener Performance

Table 4. Mean Absolute Error of prediction as a function of age and sex of the speaker

MAE(yr)	20-29	30-39	40-49	50-59	60-69	70-79
Male	7.42	9.32	10.52	7.99	13.85	11.14
Female	5.63	8.00	8.71	12.07	12.10	11.30

Table 5. Mean Absolute Error of prediction as a function of age and sex of the listener

MAE (yr)	20-29	30-39	40-49	50-59	60-69
Male	8.34	8.22	11.36	10.01	13.24
Female	9.95	9.39	10.57	9.38	10.10

- Overall MAE=9.79yr, Male=10.51yr, Female 9.51yr
- Speakers in age-band 20-29 significantly better recognised
- Older listeners worse than younger listeners at predicting age

Listener Panels

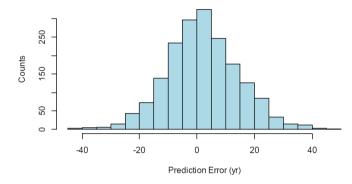
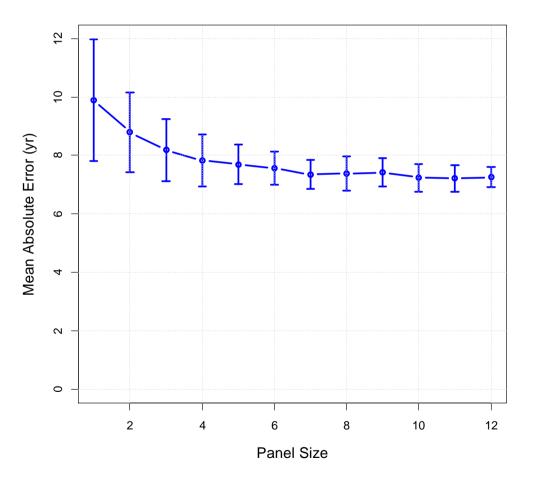
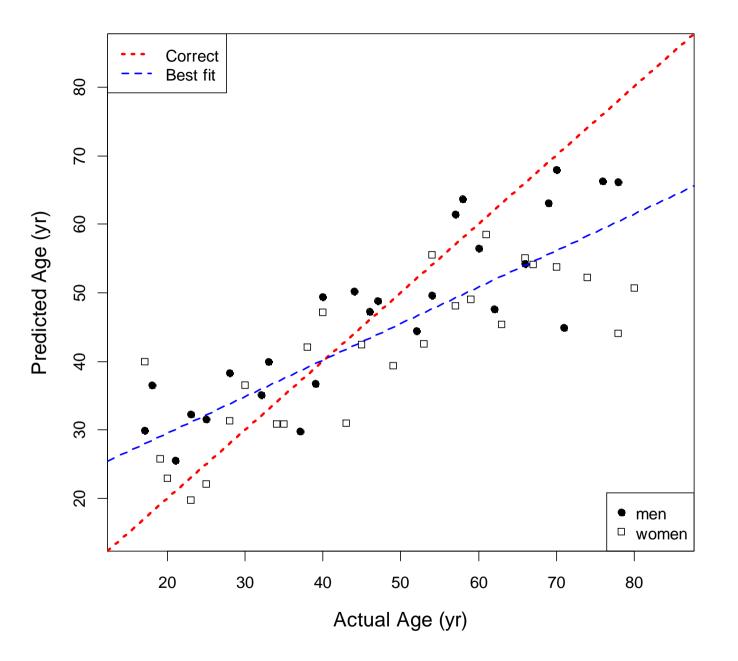



Fig. 4. Distribution of age prediction errors by human listeners.

SLSP November 2015

Machine Estimation

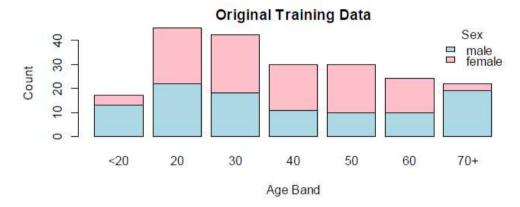

Feature Analysis

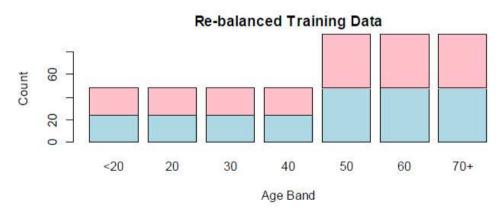
- OpenSMILE Toolkit
- InterSpeech 2014 Paralinguistics Challenge
- 65 low-level descriptors
 - ▶ e.g energy, spectral envelope, pitch and voice quality
- Summative statistics collected per audio file
 - e.g. means, medians, quantiles, differences
- 6373 features per recording
- Feature Selection
 - Only features which have absolute correlation with age > 0.1
 - Leaves 2538 features

Machine Estimation

Machine Learning

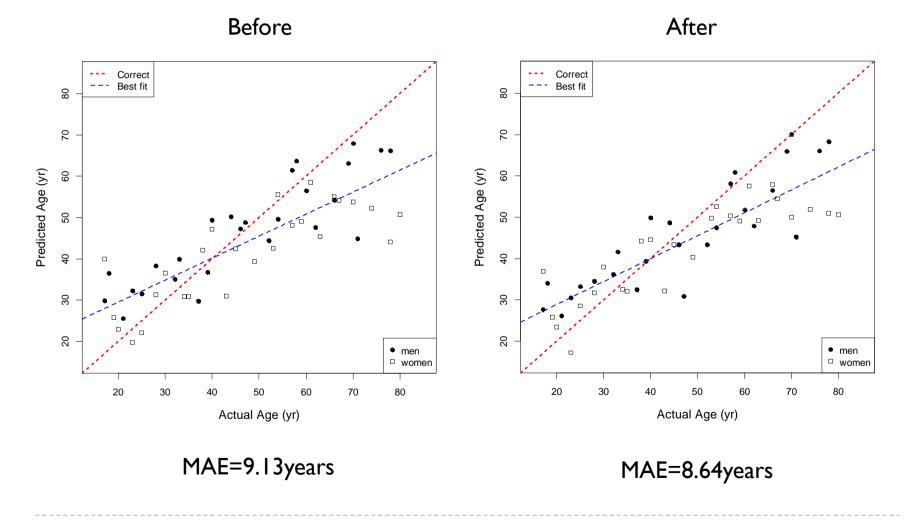
- Support Vector Regression ("e1071" in R)
- Radial basis function kernel
- Optimal control parameters found on training set
- Separate systems for
 - Male speakers
 - Female speakers
 - All speakers


Machine Performance


MAE(yr)	20-29	30-39	40-49	50-59	60-69	70-79
Male	7.64	4.89	4.68	5.54	8.87	12.40
Female	3.12	4.46	7.86	7.72	11.00	23.97

Measurement	MAE (years)
Overall MAE	9.13
Male speakers only	7.98
Female speakers only	10.29
Gender independent model	9.18
Null model	16.7

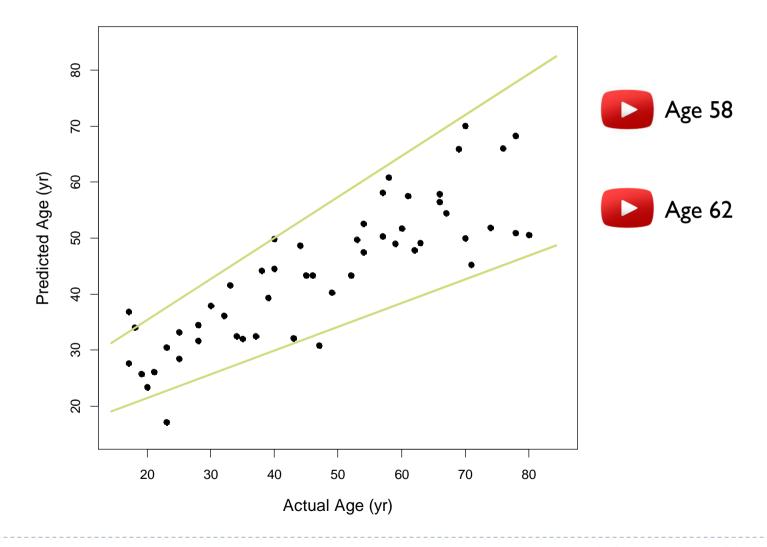
 Table 6.
 Mean Absolute Error of prediction as a function of age and sex of the speaker


Rebalance Training Set

SMOTE: Synthetic Minority Oversampling Technique

Effect of balancing training set

Comparison of Human & Machine


Human Listeners

- Overall MAE=9.79years
- Listener Panels
 - ▶ Size 10: ~7.5yr
 - ▶ Size 2: ~8.5yr

Machine

- Overall MAE=8.64years
- Better than 2/3 of individual listeners

Increasing variation with age?

SLSP November 2015

Summary

- Human and machine performance on age estimation from speech more similar than previous studies suggested
 - Once we make a fair comparison
- Machine systems have an edge over the average listener
- Panels of listeners have an edge over the machine
- Some indication that increasing variability in voice with increasing age makes prediction of age more difficult for older speakers