

Continuous word representation and prosodic features for ASR error detection

Sahar Ghannay*, Yannick Estève*, Nathalie Camelin*, Camille Dutrey☆, Fabián Santiago☆, and Martine Adda-Decker☆

*LIUM, IICC, University of Le Mans France

☆LPP - University of Sorbonne Nouvelle, Paris, France

SLSP 2015, Statistical Language and Speech Processing, Budapest, Hungary

24/11/2015

MGB 2015 challenge results for ASR task on BBC data

	Best Sys	CRIM/ LIUM	Sys1	Sys2	Sys3	LIUM	Sys4	Sys5	Sys6	Sys7	Sys8	Sys9
Overall WER(%)	23.7	26.6	27.5	27.8	28.8	30.4	30.9	31.2	35.5	38.0	38.7	40.8

Introduction Word embeddings ASR error detection system Experiments Conclusions

Introduction

MGB 2015 challenge result

Detailed performance of the best system

Show	Best system
Daily Politics	10.4
Magnetic North	11.6
Dragons'Den	11.5
Eggheads	14.1
Athletics London	14.7
Point of View	13.5
Syd Barrett	21.3
Top Gear	21.8
Blue Peter	24.6
Legend of the Dragon	21.7
The North West 200	27.7
Holby City	32.1
The Wall	33.7
One Life Special Mum	35.3
Goodness Gracious ME	37.2
Oliver Twist	41.4
Overall WER(%)	23.7

ASR errors have impact on downstream applications:

- Information retrieval
- Speech to speech translation
- Spoken language understanding
- Enhancement of training corpus of acoustic model from unlabeled data
- * etc.

ASR errors have impact on downstream applications:

- Information retrieval
- Speech to speech translation
- Spoken language understanding
- Enhancement of training corpus of acoustic model from unlabeled data

♣ etc.

✓ Related work

- Approaches based on Conditional Random Field (CRF)
 - OOV detection [C. Parada *et al.* 2010]
 - Contextual information
 - Errors detection [F. Béchet & B. Favre 2013]
 - ASR based, lexical and syntactic informations
 - Errors detection at word/utterance level [Stoyanchev *et al.* 2012]
 - Syntactic and prosodic features
- Approach based on neural network
 - Errors detection [T. Yik-Cheung et al. 2014]
 - Complementary ASR systems

- ✓ Contributions
- Neural approach
 - Word embeddings combination
 - Prosodic features
 - Confidence measures produced by the neural system

Word embeddings

Mapping words to high-dimensional vectors (e.g. 200 dimensions)

$$R: Words = \{W_1, ..., W_n\} \rightarrow Vectors = \{R(W_1), ..., R(W_n)\} \subset R^d$$

Distance between vectors indicates the relation between words

 $R(W_1) \approx R(W_n) \to W_1 \approx W_n$

Word embeddings

Mapping words to high-dimensional vectors (e.g. 200 dimensions)

$$R: Words = \{W_1, ..., W_n\} \to Vectors = \{R(W_1), ..., R(W_n)\} \subset R^d$$

Distance between vectors indicates the relation between words

		Ĩ		10(•• 11)	, ,, <u>,</u>	$\bullet h$				
			000		1				FRANCE	JESUS	XBOX
			20	15					AUSTRIA	GOD	AMIGA
	f	ew	fine	10	30		r leade	ninister er	BELGIUM	SATI	PLAYSTATION
		two	six			head	president		GERMANY	CHRIST	MSX
		th	iree four			chief	chairı director	man spokesman	ITALY	SATAN	IPOD
some	many	Several	thor				unector		GREECE	KALI	SEGA
		0	ulei			executi	^{ve} trader	analyst	SWEDEN	INDRA	psNUMBER
thosethe	ese all								NORWAY	VISHNU	HD
		both							EUROPE	ANANDA	DREAMCAST
									HUNGARY	PARVATI	GEFORCE
									SWITZERLAND	GRACE	CAPCOM

 $R(W_1) \approx R(W_n) \to W_1 \approx W_n$

2D t-SNE visualizations of word embeddings. Left: Number Region; Right: Jobs Region [J.Turian *et al*. 2010]

What words have embeddings closest to a given word? [R.Collobert *et al*. 2011]

Word embeddings approaches(1/3)

- Tur: Collobert and Weston embeddings revised by Joseph Turian [J.Turian *et al.* 2010]
 - Existence n-gram
 - Training criterion: score (n-gram) > score (corrupted n-gram) + some margin

Neural architecture to compute 50 dimensional word embeddings

Word embeddings approaches(2/3)

- 2. Word2vec [T.Micolov *et al.* 2013]
 - Continuous bag of words (CBOW)
 - predicting the current word based on its context

CBOW architecture

Word embeddings approaches(3/3)

- Glove: global vector for word representation [J.Pennington *et al.* 2014]
 - Analysis of co-occurrences of words in a window
 - building a co-occurrence matrix
 - estimating continuous representations of the words

Word embeddings combination (1/3)

- 1. Simple concatenation (GTW)
 - concatenation of 100 dimensional word embeddings: glove, tur and w2v
 - word = vector of 300 dimensions

glove	tur	w2v	300 D
-------	-----	-----	-------

Word embeddings combination (2/3)

- 2. Principal Component Analysis (PCA)
 - Convert correlated variables into uncorrelated variables called principal components.

Word embeddings combination (3/3)

- 3. Auto-encoders
 - Ordinary auto-encoder (GTW-O)

Denoising auto-encoder (GTW-D)

dependency labels

Word embeddings

Word embeddings

Set of features

Classic acoustic-prosodic features

- number of phonemes
- average duration of phonemes
- duration of the previous pause
- average f0 of the word
- f0 delta between the last and the first vowel of the word $^{(b)}$
- + f0 semitone delta between the last and the first vowel of the word

Neural architecture: MLP-Multi-Stream

Experimental data

Training of the neural system:

Automatic transcriptions of the ETAPE Corpus [G.Gravier *et al.* 2012], generated by:

- ✤ ASR: CMU Sphinx decoder
 - acoustic models: GMM/HMM

Training data of the word embeddings:

Corpus composed of 2 billions of words:

- Articles of the French newspaper "Le Monde",
- French Gigaword corpus,
- Articles provided by Google News,
- Manual transcriptions: 400 hours of French broadcast news.

ASR	Name	#words REF	#words HYP	WER
Calitar	Train	349K	316K	25.9
Sphinx	Dev	54K	50K	25.2
GIVIIVI	Test	58K	53K	22.5

Evaluation results

- Neural architecture vs. CRF [F. Béchet and B. Favre 2013]
- Evaluation metrics:
 - Error label: F-measure (weighted average of the precision and recall)
 - Overall classification: Classification error rate (CER)
 - Confidence measures: Normalized cross entropy (NCE)

		Label error	Global
Neural architecture	Embeddings	F-measure	CER
	Glove tur w2v	59.64 57.58 56.69	10.60 10.54 10.49
MLP-MS			

		Label error	Global
Neural architecture	Embeddings	F-measure	CER
	Glove tur w2v	59.64 57.58 56.69	10.60 10.54 10.49
	GTW 300	59.71	10.38
MLP-MS			

		Label error	Global
Neural architecture	Embeddings	F-measure	CER
	Glove tur w2v	59.64 57.58 56.69	10.60 10.54 10.49
	GTW 300	59.71	10.38
MLP-MS	GTW-PCA100 GTW-PCA200	59.04 57.09	10.39 10.48

		Label error	Global
Neural architecture	Embeddings	F-measure	CER
	Glove tur w2v	59.64 57.58 56.69	10.60 10.54 10.49
	GTW 300	59.71	10.38
MLP-MS	GTW-PCA100 GTW-PCA200	59.04 57.09	10.39 10.48
	GTW-0100	56.43	10.28
	GTW-0200	61.86	9.86
	GTW-D100	61.63	10.12
	GTW-D200	63.42	9.89

Performance of MLP-MS on Test corpus Without prosodic features

	Label error	Global
Approach	F-measure	CER
CRF(baseline)	57.52	8.79
GTW-O200 GTW-D200	61.83 62.25	8.10 8.25

Performance of MLP-MS (Test corpus)
With prosodic features

Global Label error Corpus Approach CER F-measure CRF(baseline) 57.52 8.79 Test GTW-0200 8.10 62.25 GTW-D200 64.42 8.25

- prosodic features

Complia	Approach	Label error	Global
Corpus	Арргоасп	F-measure	CER
	CRF(baseline)+pros	59.17	8.57
Test	GTW-O200+pros GTW-D200+pros	64.73 64.42	7.96 8.03

Calibrated confidence measure

- prosodic features

+prosodic features

Percentage of correct words based on PAP and confidence measures derived from MLP-MS and CRF

Calibrated confidence measure

Name	PAP	Softmax proba GTW-D200	Softmax proba GTW-O200	CRF
Without prosodic features				
Dev	-0.064	0.425	0.443	0.445
Test	-0.044	0.448	0.461	0.457
With prosodic features				
Dev	-0.064	0.461	0.463	0.449
Test	-0.044	0.471	0.477	0.463

NCE for PAP and the probabilities resulting from MLP-MS and CRF

Conclusions

ASR error detection system

- Word embeddings combination
- Prosodic features

- MLP-MS architecture:
 - Outperforms CRF approach
 - Produces well calibrated confidence measures

Chank you