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Introduction 

¤  HMM-based speech synthesis (HSS) models are trained on 
speech corpora 

¤  Utterances read by a speaker,  
and annotated with phonetic labels  

¤  Process of annotating a corpus starts with  
grapheme-phoneme (GP) conversion (complex probl.) 

¤  State-of-the-art systems are still imperfect for most 
languages [Jouvet, D. et al. 2012] 
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Introduction 
GP conversion 

¤  GP conversion is a deterministic process,  
while the speaker phoneme realization is not 

¤  Particularly true for the schwa, which is not realized 
systematically the same way by different speakers, in 
different situations  

¤  In French, there are also liaisons between words, whose 
realizations particularly vary between speakers 
[Woehrling, C. & Boula de Mareuil, P. 2006] 
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Introduction 
Types of error tested 

¤  After GP conversion, the alignment process segments the 
speech utterances 

¤  2 types of error can arise from corpus annotating processes: 
¤  Phonetic label errors: 

¤  pronounced by the speaker but not generated in the labels 
¤  not realized by the speaker but generated in the labels 

¤  Alignment errors 

¤  In HSS, correspondence between label units and speech 
units is not direct (unlike in unit selection synthesis, USS) 

¤  To what extent these systems are sensitive to the corpus 
annotation error? 
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Synthesis platform 

¤  LIMSI Parametric Speech Synthesis System (LIPS3)  
is a TTS platform built around the HMM-based speech 
synthesis system (HTS) [Tokuda, K. 2013] 

¤  Vocoder: sptk-3.7 (analysis) and hts-engine-1.08 (synth.) 
Basic excitation-filter model: impulse excitation and 
configured to use pure Mel-Frequency Cepstrum 
Coefficients (MFCC) for spectral envelop 

¤  Language processing modules (for French), were 
developed in situ [Evrard, M. et al. 2015] 
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Synthesis platform 
General process of HSS 
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[Tokuda, K. et al. 2013] 
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Fig. 7. Example of an observation sequence of an F0 pattern.

(MDL) [57]. As the spectral, excitation, and duration pa-
rameters have different context dependency, they are clustered
separately by using stream-dependent decision trees [11].

E. Synthesis part

The synthesis part of the system is shown in the lower part
of Fig. 6. It first converts a given text to be synthesized into a
sequence of context-dependent labels. According to the label
sequence, a sentence-level HMM is constructed by concate-
nating context-dependent HMMs. The duration of each state
is determined to maximize its probability based on its state
duration probability distribution (Eq. (12)). Then a sequence of
speech parameters including spectral and excitation parameters
is determined so as to maximize its output probability using the
speech parameter generation algorithm [46] (II-C). Finally, a
speech waveform is re-synthesized directly from the generated
spectral and excitation parameters by using a speech synthe-
sis filter, such as the mel-log spectral approximation filter
[42] for mel-cepstral coefficients and all-pole filter for linear
prediction-based spectral parameter coefficients, as explained
in II-A.

III. FLEXIBILITY OF HMM-BASED SPEECH SYNTHESIS

The main advantage of HMM-based speech synthesis over
concatenative speech synthesis is its flexibility in changing
voice characteristics, speaking styles, and emotions. Many
techniques for controlling variation in speech have been
proposed, and this section overviews major techniques to ac-
complish this, including adaptation, interpolation, eigenvoice,
and multiple regression.
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Fig. 8. Speaker adaptation techniques of an HMM-based speech synthesis
system.

A. Speaker characteristics

Model adaptation (mimicking voices): Speaker adaptation
is a technique for transforming existing speaker-independent
acoustic models to match a target speaker using a very small
amount of speech data [24]. This method starts with an
“average voice model” and uses model adaptation techniques
drawn from speech recognition such as maximum likelihood
linear regression (MLLR) [58], [59], to adapt the speaker
independent HMMs to a new speaker or to a new speaking
style, as shown in Fig. 8.

The average voice model is a “canonical” speaker-
independent HMM where inter-speaker acoustic variation is
normalized using a technique called on speaker-adaptive train-
ing (SAT) [60], [61]. MLLR is one of the most important
recent developments in speech recognition because this can
effectively reduce acoustic mismatch between training data
and test data. MLLR adaptation estimates a set of linear
transforms to map Gaussian pdfs of the existing average voice
model into a new adapted model so that the adapted model
approximates given adaptation data better. Since the amount of
adaptation data is limited, a regression class tree is normally
used to cluster the Gaussian components based on acoustic
similarity and to share the same MLLR transform [62]. In
Fig. 8, there are three regression classes where the same
transformation functions are shared.

Speaker adaptation is also a very exciting development in
HMM-based speech synthesis. This adaptation allows text-to-
speech synthesizers for a target voice to be built using much
smaller amounts of training data than previously required.
Prior to this, the development of a new voice required many
hours of carefully annotated speech recordings from a single
speaker. Speaker adaptive HMM-based synthesis requires as
little as 5–7 minutes of recorded speech from a target speaker
to generate a personalized synthetic voice [24]; hence, the
average voice model can be easily transformed into a synthetic
voice for any number of speakers [25]. The major adaptation
techniques used for HMM-based speech synthesis are similar
to those of ASR and include maximum a posteriori (MAP)



Synthesis platform 
HTS 

delta and delta-delta coefficients. On the other hand, the excita-
tion part consists of log fundamental frequency (log F0), its delta
and delta-delta coefficients. HMMs have state duration densities to
model the temporal structure of speech. As a result, HTS models
not only spectrum parameter but also F0 and duration in a uni-
fied framework of HMM. It is noted that it does not require label
boundaries for training when an appropriate initial HMM set is
available because all parameters of HMMs are determined auto-
matically through the embedded training of HMMs.

Spectrum modeling
To control the synthesis filter by HMM, its system function should
be defined by the output vector of HMM, i.e., mel-cepstral coef-
ficients. Thus we use a mel-cepstral analysis technique [7] which
enables speech to be re-synthesized directly from the mel-cepstral
coefficients using the MLSA (Mel Log Spectrum Approximation)
filter [7]1.

F0 modeling
The observation sequence of fundamental frequency (F0) is com-
posed of one-dimensional continuous values and discrete symbol
which represents “unvoiced”. Therefore the conventional discrete
or continuous HMMs can not be applied to F0 pattern modeling.
To model such observation sequences, we have proposed a new
kind of HMMbased onmulti-space probability distribution (MSD-
HMM) [9]. The MSD-HMM includes discrete HMM and contin-
uous mixture HMM as special cases, and further can model the
sequence of observation vectors with variable dimensionality in-
cluding zero-dimensional observations, i.e., discrete symbols. As
a result, MSD-HMM can model F0 patterns without heuristic as-
sumption.

Duration modeling
State durations of each HMM are modeled by a multivariate Gaus-
sian distribution [10]. The dimensionality of state duration density
of an HMM is equal to the number of states in the HMM, and the
n-th dimension of state duration densities is corresponding to the
n-th state of HMMs 2.

Decision-tree based context clustering
There are many contextual factors (e.g., phone identity factors,
stress-related factors, locational factors) that affect spectrum, F0

pattern and duration. To capture these effects, we use context-
dependent HMMs. However, as contextual factors increase, their
combinations also increase exponentially. Therefore, model pa-
rameters cannot be estimated accurately with limited training data.
Furthermore, it is impossible to prepare speech database which in-
cludes all combinations of contextual factors. To overcome this
problem, a decision-tree based context clustering technique [11,
12] is applied to distributions for spectrum, F0 and state duration
in the same manner as HMM-based speech recognition.

The decision-tree based context clustering algorithm have been
extended for MSD-HMMs in [13]. Since each of spectrum, F0

and duration has its own influential contextual factors, they are
clustered independently (Fig.2). State durations of each HMM
are modeled by a n-dimensional Gaussian, and context-dependent
n-dimensional Gaussians are clustered by a decision tree. Note
that spectrum part and F0 part of state output vector are modeled

1The source codes of the mel-cepstrum based vocoding technique can
be found in Speech Signal Processing Toolkit (SPTK) [8].

2In HTS, left-to-right model with no skip is used.
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Fig. 2. Decision trees for context clustering.

by multivariate Gaussian distributions and multi-space probability
distributions, respectively.

Software
The training part of HTS was implemented as a modified version
of HTK [14] together with SPTK [8]. Modifications which we
made to HTK are listed below:
1. Context clustering based on MDL criterion (instead of ML
one)

2. Stream-dependent context clustering
3. Multi-space probability distribution [9] as state output proba-
bility

4. State duration modeling

2.2. Synthesis part

In the synthesis part of HTS, first, an arbitrarily given text to be
synthesized is converted to a context-based label sequence. Sec-
ond, according to the label sequence, a sentence HMM is con-
structed by concatenating context dependent HMMs. State dura-
tions of the sentence HMM are determined so as to maximize the
output probability of state durations [10], and then a sequence of
mel-cepstral coefficients and log F0 values including voiced / un-
voiced decisions is determined in such a way that its output proba-
bility for the HMM is maximized using the speech parameter gen-
eration algorithm (Case 1 in [2]). The main feature of the system
is the use of dynamic feature: by inclusion of dynamic coefficients
in the feature vector, the speech parameter sequence generated in
synthesis is constrained to be realistic, as defined by the statistical
parameters of the HMMs. Finally, speech waveform is synthesized
directly from the generated mel-cepstral coefficients and F0 values
by using the MLSA filter. Although a mixed excitation technique
for HTS was developed in [15], the traditional excitation model
was used in this work.

3. HTS IMPLEMENTATION ON FESTIVAL
ARCHITECTURE

We used 524 sentences from CMU Communicator database3 for
training. Speech signal was sampled at 16 kHz, windowed by a

3It can be found at http://festvox.org/dbs/dbs com.html.
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[Tokuda, K. et al. 2002] 

Synthesis platform 
GP 

¤  GP conversion developed on a core set of rules previously 
created at LIMSI and evaluated in [Yvon, F. et al. 1998] 

¤  Exclusively rule based, consisted of 7 stages: 
¤  sentence chunking 

¤  normalization 

¤  basic part of speech (POS) tagging 

¤  standard phonetization 

¤  peculiar rules application 

¤  liaisons management 

¤  syllabation 
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Synthesis platform 
Corpus 

¤  The text corpus was designed and recorded by an industrial partner 
(Vocally) in a collaborative project 

¤  It consists of: 

¤  Speaker: professional actress, L1 of Parisian French  

¤  The corpus was aligned using the Ergodic hidden Markov models 
(EHMM) tool [Prahallad, K. et al. 2006] from the Festvox tool suite 

9 

SLSP 2015 – November 24, 2015 Marc Evrard – Impact of Corpus Phonetic Alignment  

  1 402 sentences 

10 313 words 

15 552 syllables  

36 362 phonemes  

Synthesis platform 
Linguistic contextual features 

prev_prev_ph Previous-previous phoneme  

prev_ph Previous phoneme 

ph Current phoneme 

next_ph Next phoneme 

next_next_ph Next-next phoneme 

phone_from_syl_start Position of the current phoneme in the syllable  

phone_from_syl_end (ditto counted from the syllable end) 

syl_numphones Number of phonemes in the syllable 

syl_from_word_start Position of the current syllable in the word  

syl_from_word_end (ditto counted from the word end) 

syl_from_phrase_start Position of the current syllable in the phrase  

syl_from_phrase_end (ditto counted from the phrase end) 

syl_vowel Vowel in the current syllable 

word_numsyls Number of syllable in the word 

word_accent Prominence of the current word 

phrase_end Final punctuation of the phrase 

utt_numsyls Number of syllables in the utterance 

utt_numwords Number of words in the utterance 

utt_numphrases Number of phrases in the utterance 
10 
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Experiment 

¤  Sensitivity of the annotation errors were tested:  
Different text-to-speech (TTS) systems were built,  
using the same speech corpus,  
with various altered annotations 

¤  2 types of variations in these systems: 
¤  Number of schwa and liaison realizations 
¤  Label alignment 

¤  Set of sentences synthesized using the different systems 

¤  Subjective evaluation to assess the quality differences 
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Experiment 
Phonetic changes 

¤  Phonetic realization changes: 
Schwa and Liaisons 

¤  GP rules modified to artificially increase/decrease occurrences 
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Liaisons Suppr. Add. 

/z/ 303 117  

/t/ 227 44  

/n/ 131 1 

/p/ 10 0 

Total 671  162  

Ratio 1.85% 0.45% 

Schwa Suppr. Add. 

Content words 1917 227 

Functional words 513 42 

Total 2430 269 

Ratio 6.68% 0.74% 



Experiment 
Phonetic changes 

¤  Schwa change example (“Vous êtes le peuple souverain.”): 
¤  Reference: 

/vu zɛt  lə pœplə suvʁ~ɛ/ 
¤  Schwas added: 

/vu zɛtə lə pœplə suvʁ~ɛ/ 
¤  Schwas removed: 

/vu zɛt  lə pœpl  suvʁ~ɛ/ 

¤  Liaison change example  
(“Puis il remit avec orgueil son mouchoir dans sa poche.”): 
¤  Reference: 

/pɥi zil ʁəmi  avɛk ɔʁɡœj s~ɔ muʃwaʁ d~ɑ sa pɔʃ/ 
¤  Schwas added: 

/pɥi zil ʁəmit avɛk ɔʁɡœj s~ɔ muʃwaʁ d~ɑ sa pɔʃ/ 
¤  Schwas removed: 

/pɥi  il ʁəmi  avɛk ɔʁɡœj s~ɔ muʃwaʁ d~ɑ sa pɔʃ/ 
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Experiment 
Boundary shifts 

n y l b ə z w ɛ̃ d õ k d ɛ̃ v ɑ̃ t e o t ʁ ə ʃ o z

n y l b ə z w ɛ̃ d õ k d ɛ̃ v ɑ̃ t e o t ʁ ə ʃ o z
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Nul besoin donc d'inventer autre-chose. 

1. 

2. 

3. 

4. 

5. 



Experiment 
Boundary shifts 
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¤  Time difference of 
the boundary 
position (ms) relative 
to the manually 
labeled corpus for 
each segment 
(here 32 segments) 

¤  Highest value is 
reached near the 
end of the sentence 
for the isochronous 
segmentation (B1) 

Results 

¤  8 systems tested along 
with natural reference: 

¤  10 sentences 
synthesized with each 
system 

¤  13 subjects rated the 
overall quality of each 
sentence on a MOS 
(mean opinion score) 
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Code TTS system 

O Natural 

M Manually corrected 

L– labels Less liaisons 

L+ More liaisons 

S– Less schwas 

S+ More schwas 

B1 Isochronous segmentation 

B2 Phone shifted right 

B3 50% shift 



1.0
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2.0
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3.0

3.5

4.0

4.5

5.0

   B3    B2        L– B1        S+        S–        L+     M   O

M
O

S

Results 
MOS 

¤  “TTS” (systems) 
explains most of the 
observed variance 

¤  5 best systems: 
comparable  
quality 

¤  2 best (Natural and 
manual) perceived 
significantly better 
that the 3 worst 
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Facteur df df_err F p �2 

TTS 8 1080 140.86 0.000 0.51 

SENT 9 1080 19.53 0.000 0.14 

TTS*SENT 72 1080 3.05 0.000 0.17 

Results 
MOS 
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TTS system Mean Group  

O Natural 4.9692 A 

M Manually corrected 2.8615 B 

L– labels Less liaisons 2.8076 B 

L+ More liaisons 2.7692 BC 

S– Less schwas 2.6538 BC 

S+ More schwas 2.6385 BC 

B1 Isochronous segmentation 2.4692 CD 

B2 Phone shifted right 2.1538 D 

B3 50% shift 1.7615  E 



Results 

Analysis: Phoneme occurrence 

¤  Number of changes (phonemes) must be an important 
factor to explain the quality loss 

¤  Not the only one: adding 6% of unperformed schwas in 
the labels does not lead to a significant quality loss 

¤  But “forgetting” actually performed  liaisons has a 
stronger effect on the quality output 
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Results 

Analysis: Boundary shifts 

¤  Resilience of the learning process to boundary shifts  
(to some degree) 

¤  “50% shift” causes a stronger degradation, than the 
“phone shift to the right” 

¤  “50% shift” leads to an alignment that maximizes mixes 
among phoneme labels (units located on phoneme 
transitions)  

¤  “isochronous” (equal duration) segmentation results in a 
system whose quality is comparable with the reference 
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Conclusion 

¤  HSS seems fairly robust to training corpus labeling errors 

¤  According to these results, phonetic alignment precision 
should not be seen as a priority for HSS training corpora 

¤  Observation of significant quality degradations linked to 
phoneme deletion supports the hypothesis of a greater 
sensitivity of the learning process to missing labeling 

¤  Should push GP designers to favor realization of 
phonemes for ambiguous cases 
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Conclusion 
Perspectives 

¤  A next step for the analysis of phonetic variation 
sensitivity: use a fixed text corpus and phonetization, 
along with different phonetic realizations by the speakers 

¤  Typical condition of expressive speech synthesis using 
common text for the different expressive corpora 

¤  Provide a deeper analysis and an objective 
measurement of the resulting HMM model quality 
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Questions? 
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Thanks for your attention J 

 

 

 
http://marcevrard.github.io/ 

marc.evrard@limsi.fr 

!
"
#

[Jouvet, D. et al. 2012]  
Evaluating grapheme-to-phoneme converters in automatic speech 
recognition context. In: ICASSP 2012. 

[Woehrling, C. & Boula de Mareuil, P. 2006] 
Identification d’accents regionaux en francais: perception et 
analyse. Revue Parole 37, 55. 

[Tokuda, K. 2013] 
Speech synthesis based on hidden Markov models. Proceedings of 
the IEEE 101(5). 

[Evrard, M. et al. 2015] 
Comparison of chironomic stylization versus statistical modeling of 
prosody for expressive speech synthesis. In : INTERSPEECH 2015. 

References 

24 

SLSP 2015 – November 24, 2015 Marc Evrard – Impact of Corpus Phonetic Alignment  



[Yvon, F. et al. 1998] 
Objective evaluation of grapheme to phoneme conversion for text-
to-speech synthesis in French. Computer Speech & Language 12(4), 
393–410 (1998). 

[Prahallad, K. et al. 2006] 
Sub-phonetic modeling for capturing pronunciation variations for 
conversational speech synthesis. ICASSP 2006. 

[Tokuda, K. et al. 2002] 
An HMM-based speech synthesis system applied to English. 
Proceedings of 2002 IEEE Workshop on Speech Synthesis.  

References 

25 

SLSP 2015 – November 24, 2015 Marc Evrard – Impact of Corpus Phonetic Alignment  


