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Fatigue in Safety-Critical Environments

• Driver fatigue said to be involved in 15-20% of all  transportation 
accidents

• Critical problem in aerospace
– pilots, air-traffic controllers
– passenger safety

• Critical problem in mining
– drivers
– lost revenue from accidents
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Assessing Fatigue from Biosignals

• Equipment operation
– e.g. steering of vehicle

• Computer-vision
– e.g. head movement, eye blinks

• Electro-encephalography
– e.g. visual cortex activity

• Electro-cardiology
– e.g. heart rate

• Electro-oculography
– e.g. eye muscle movements

• Pulse oximetry
– e.g. blood oxygenation
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Predicting Fatigue from Speech Recordings

• To obtain cheap, non-obtrusive means for assessing fatigue
– May be used in combination with other methods

• Most published work uses self-reporting of “sleepin ess”
– Karolinska Sleepiness Scale

• But KSS ratings only have average correlations with  behavioural 
measures of fatigue
– r ~ 0.57 (Kaida et al., 2006), r ~ 0.49-0.71 (Gillberg et al., 1994), no 

significant correlation (Åhsberg et al., 2000)

• Our goal was to collect speech recordings labelled with objective 
measures of fatigue
– Time spent awake
– Performance on psycho-physiological tests
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Data collection on fatigue and speech

• Isolation experiment in 
collaboration with GCTC

• 7 aerospace trainees
• In chamber and awake 60hr

– morning day 1
– evening day 3

• Physiological/psychological 
tests every 6 hours
– reaction time
– memory
– cognitive load

• Read 3min passage from 
novel every 6 hours

Example Isolation Chamber
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Test scores over 60hr awake

Day 1 Day 2 Day 3



Speech signal feature extraction

• iVOICE Feature Analysis
– designed to generate features robust to added noise
– C++ implementation

• Temporal domain analysis
– features derived from autocorrelation function

• Spectral domain analysis
– features derived from spectrum

• Modulation domain analysis
– features derived from modulation spectrum

• Statistical functionals
– percentiles, dispersion, robust skewness, robust kurtosis

• Generates 1100 features per recording
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Machine Learning

• Classification Task
– Divide time awake into day 1 vs days 2 & 3
– 24hour threshold or 16hour threshold
– Support Vector Machine, linear kernel
– Leave-one out cross-validation

• Regression
– Predict time awake from speech features
– Predict test scores from speech features
– Support Vector Regression
– 10-fold cross-validation
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Speaker-dependent Feature Normalisation
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Summary of Classification Results
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Configuration Unweighted Accuracy

24hr threshold, raw features 82.2%

24hr threshold, Gaussianized
features

86.1%

16hr threshold, raw features 82.6%

16hr threshold, Gaussianized 
features

93.9%

24hr threshold, split validation, 
Gaussianized features

93.8%



Building Predictive Models
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Time
Awake

Speech
Features

Test
Scores

• Multiple Linear Regression
• Support Vector Regression



Prediction of Time Awake from Speech
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Prediction of Time Awake from Speech
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Prediction of Test Scores from Time Awake
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Prediction of Test Scores from Speech
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Summary

• Useful information is present in 
speech signal for predicting 
fatigue

• Regression: time awake 
predicted to about 1 part in 6 
(r=0.73, MAE=630min)

• Classification: day-1 vs day-2/3 
can be discriminated ~80% 
speaker independent, ~90% 
speaker dependent

• Availability of speech improves 
prediction of test scores over 
latency alone
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Conclusions

• Changes in speech with fatigue in this task were detectable and 
reliable enough for classification of time spent awake.

• Better performance was achieved through Gaussianization of features, 
although in practice this would require an enrolment stage for 
speakers.

• That test scores were better predicted from the speech features than 
from time may be due to some common cognitive or physiological 
basis for test performance and speech performance.

• However, this is a very small study (7 subjects, 10 recordings over 60 
hours) and concept needs to be trialled in more realistic application 
scenarios.
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