≜UCL

The Prediction of Fatigue Using Speech as a Biosignal

Khan Baykaner, Mark Huckvale, Iya Whiteley University College London Oleg Ryumin, Svetlana Andreeva Gagarin Cosmonaut Training Centre

[•]UCL

iVOICE

integrated VOIce analysis of satellite Communications Embedded in time & safety-critical environment

ARTES (Advanced Research in Telecommunications Systems)

iVOICE | UCL Centre for Space Medicine | SLSP Nov 2015

Fatigue in Safety-Critical Environments

• Driver fatigue said to be involved in 15-20% of all transportation accidents

• Critical problem in aerospace

- pilots, air-traffic controllers
- passenger safety

• Critical problem in mining

- drivers
- lost revenue from accidents

UCL

Assessing Fatigue from Biosignals

- Equipment operation
 - e.g. steering of vehicle
- Computer-vision
 - e.g. head movement, eye blinks
- Electro-encephalography
 - e.g. visual cortex activity
- Electro-cardiology
 - e.g. heart rate
- Electro-oculography
 - e.g. eye muscle movements
- Pulse oximetry
 - e.g. blood oxygenation

Predicting Fatigue from Speech Recordings

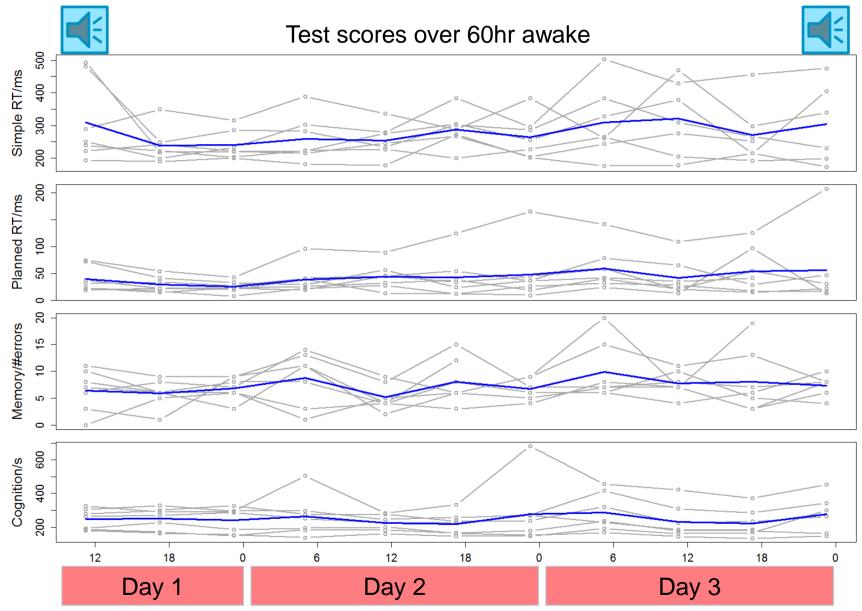
- To obtain cheap, non-obtrusive means for assessing fatigue
 - May be used in combination with other methods
- Most published work uses self-reporting of "sleepiness"
 - Karolinska Sleepiness Scale
- But KSS ratings only have average correlations with behavioural measures of fatigue
 - r ~ 0.57 (Kaida et al., 2006), r ~ 0.49-0.71 (Gillberg et al., 1994), no significant correlation (Åhsberg et al., 2000)
- Our goal was to collect speech recordings labelled with objective measures of fatigue
 - Time spent awake
 - Performance on psycho-physiological tests

Data collection on fatigue and speech

- Isolation experiment in collaboration with GCTC
- 7 aerospace trainees
- In chamber and awake 60hr
 - morning day 1
 - evening day 3
- Physiological/psychological tests every 6 hours
 - reaction time
 - memory
 - cognitive load
- Read 3min passage from novel every 6 hours

Example Isolation Chamber

UCL



iVOICE | UCL Centre for Space Medicine | SLSP Nov 2015

Speech signal feature extraction

• iVOICE Feature Analysis

- designed to generate features robust to added noise
- C++ implementation

• Temporal domain analysis

- features derived from autocorrelation function

• Spectral domain analysis

features derived from spectrum

• Modulation domain analysis

- features derived from modulation spectrum
- Statistical functionals
 - percentiles, dispersion, robust skewness, robust kurtosis
- Generates 1100 features per recording

Machine Learning

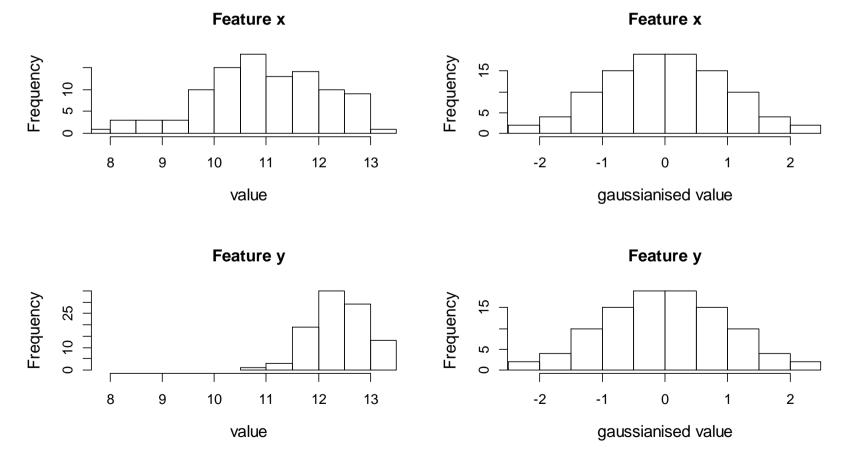
Classification Task

- Divide time awake into day 1 vs days 2 & 3
- 24hour threshold or 16hour threshold
- Support Vector Machine, linear kernel
- Leave-one out cross-validation

• Regression

- Predict time awake from speech features
- Predict test scores from speech features
- Support Vector Regression
- 10-fold cross-validation

Speaker-dependent Feature Normalisation Gaussianization

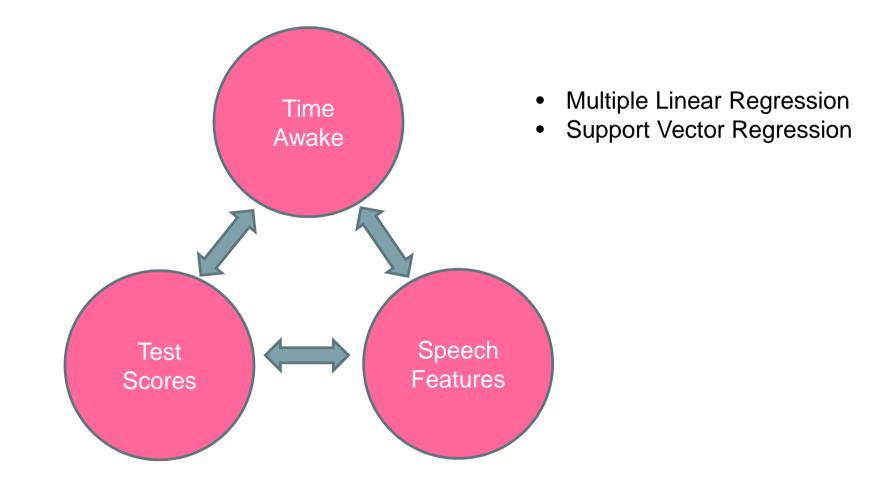


iVOICE | UCL Centre for Space Medicine | SLSP Nov 2015

Summary of Classification Results

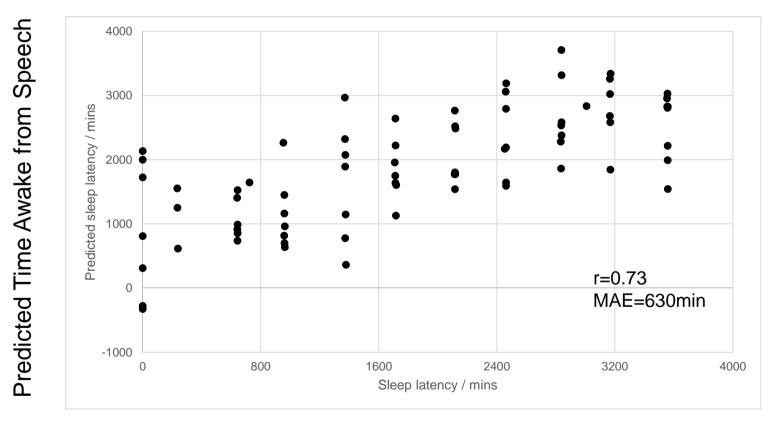
Configuration	Unweighted Accuracy
24hr threshold, raw features	82.2%
24hr threshold, Gaussianized features	86.1%
16hr threshold, raw features	82.6%
16hr threshold, Gaussianized features	93.9%
24hr threshold, split validation, Gaussianized features	93.8%

Building Predictive Models



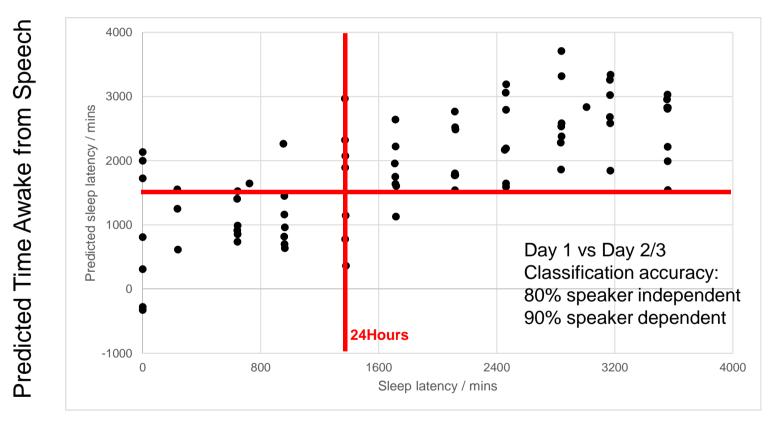
Prediction of Time Awake from Speech

SVR, Gaussianized features, 10-fold CV



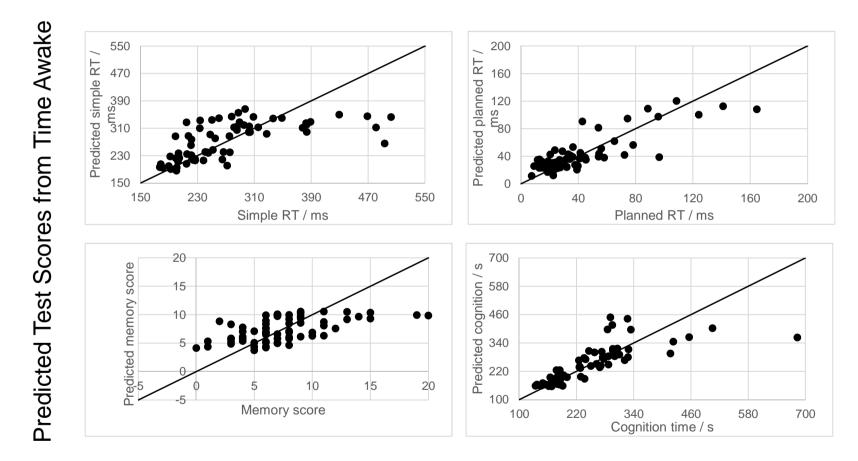
Actual time awake

Prediction of Time Awake from Speech



Actual time awake

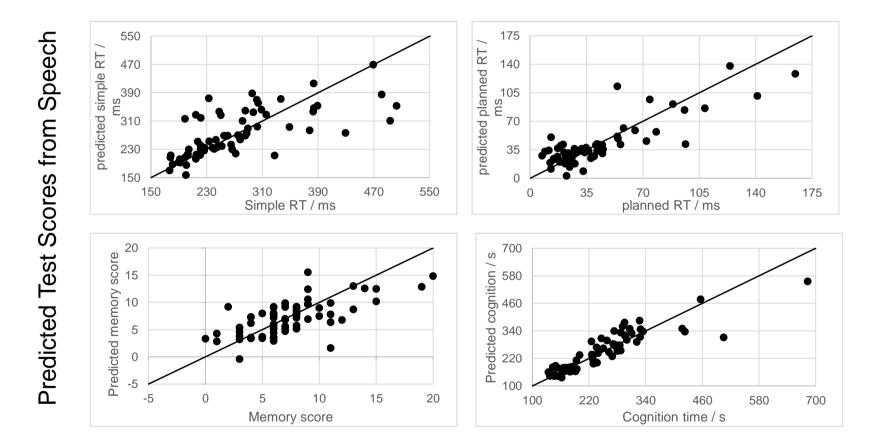
Prediction of Test Scores from Time Awake



r: 0.06-0.32, MAE: 0-3% reduction over NULL model

Actual test scores

Prediction of Test Scores from Speech



r: 0.44-0.58, MAE: 7-21% reduction over NULL model

Actual test scores

Summary

- Useful information is present in speech signal for predicting fatigue
- Regression: time awake predicted to about 1 part in 6 (r=0.73, MAE=630min)
- Classification: day-1 vs day-2/3 can be discriminated ~80% speaker independent, ~90% speaker dependent
- Availability of speech improves prediction of test scores over latency alone

Conclusions

- Changes in speech with fatigue in this task were detectable and reliable enough for classification of time spent awake.
- Better performance was achieved through Gaussianization of features, although in practice this would require an enrolment stage for speakers.
- That test scores were better predicted from the speech features than from time may be due to some common cognitive or physiological basis for test performance and speech performance.
- However, this is a very small study (7 subjects, 10 recordings over 60 hours) and concept needs to be trialled in more realistic application scenarios.