Many familiar dilemmas that we find in the application of data-driven AI have their origins in technical-mathematical choices that we have made along the way to this version of AI. Several of them might need to be reconsidered in order for the field to move forward. After reviewing some of the current problems related to AI, we trace their cultural, technical and economic origins, then we discuss possible solutions.
Nello Cristianini is Professor of Artificial Intelligence at the University of Bristol. His research covers machine learning methods, and applications of AI to the analysis of media content, as well as the social and ethical implications of AI. Cristianini is the co-author of two widely known books in machine learning, as well as a book in bioinformatics. He is a recipient of the Royal Society Wolfson Research Merit Award, and of a European Research Council Advanced Grant. Before joining the University of Bristol, he has been a professor of statistics at the University of California, Davis. Currently he is working on social and ethical implications of AI. His animated videos dealing with the social aspects of AI can be found here: https://www.youtube.com/seeapattern
Recently, computer vision approaches specially assisted by deep learning techniques have shown unexpected advancements that practically solve problems that never have been imagined to be automatized like face recognition or automated driving. However, food image recognition due to its high complexity and ambiguity, still remains far from being solved. In this project, we focus on how to combine two challenging research lines: deep learning and uncertainty modeling (epistemic and aleatoric uncertainty). After discussing our methodology to advance in this direction, we comment on potential applications, as well as the social and economic impact of the research on food image analysis.
Prof. Petia Radeva is a Full professor at the Universitat de Barcelona (UB), PI of the Consolidated Research Group “Computer Vision and Machine Learning” at the University of Barcelona (CVUB) at UB (www.ub.edu/cvub) and Senior researcher in Computer Vision Center (www.cvc.uab.es). She was PI of UB in 4 European, 3 international and more than 20 national projects devoted to applying Computer Vision and Machine learning for real problems like food intake monitoring (e.g. for patients with kidney transplants and for older people). Petia Radeva is a REA-FET-OPEN vice-chair since 2015 on, and international mentor in the Wild Cards EIT program since 2017.
She is an Associate editor of Pattern Recognition journal (Q1) and International Journal of Visual Communication and Image Representation (Q2).
Petia Radeva has been awarded IAPR Fellow since 2015, ICREA Academia assigned to the 30 best scientists in Catalonia for her scientific merits since 2014, received several international awards (“Aurora Pons Porrata” of CIARP, Prize “Antonio Caparrós” for the best technology transfer of UB, etc).
She supervised 18 PhD students and published more than 100 SCI journal publications and 250 international chapters and proceedings, her Google scholar h-index is 44 with more than 7600 cites.
This talk will be about machine learning for science. Deep time refers to many millions of years of world history recorded in sedimentary rocks. The world today captures only a snapshot of ecosystems, environments and climates that can possibly be. Looking at the past is essential for understanding ongoing changes in the natural world, resource use and possible futures. I will discuss computational approaches to reconstructing past worlds and ecosystems, as well as analyzing environmental contexts of human evolution. Very little of deep learning is used so far, although the will is strong. I will highlight the main challenges and will speculate about opportunities.
Indre Zliobaite is a tenure track professor at the University of Helsinki in Finland, where she leads a research group on Data science and evolution. She is also in charge of the global database of fossil mammals, called NOW. Zliobaite's research has contributed to foundations of fairness-aware machine learning, machine learning with evolving data, as well as evolutionary theory.
Deep learning, the latest extension of machine learning, has pushed the accuracy of algorithms to unseen limits, especially for perceptual problems such as the ones tackled by computer vision and image analysis. This workshop will cover the foundations of the field, the communities organized around it, some important tools and resources to get started with these techniques, and the latest applications of deep learning in the field of bioimage analysis. In particular, we will focus on the problems of semantic and instance segmentation of biological images, unsupervised image denoising and deep learning-based super-resolution. All classes will have a theoretical part followed by a hands-on practical session.
Mathematics at the level of an undergraduate degree in computer science: basic multivariate calculus, probability theory, and linear algebra.
Ignacio Arganda-Carreras is an Ikerbasque Research Fellow at the department of Computer Science and Artificial Intelligence of the UPV/EHU, also associated with the Donostia International Physics Center (DIPC). He is one of the founders of Fiji, one of the most popular open source image processing packages in the world, and widely used by the bio-image analysis community. His lab is focused on image processing and machine learning, especially to develop open source computer vision methods for biomedical images. For publications, see https://scholar.google.com/citations?user=02VpQlGwa_kC&hl=en
Statistical Theory of Machine Learning The goal of this course is to teach the statistical theory describing the performance of general Machine Learning and Statistical Decision Making approaches. Students will learn some needed hypothesis testing theory and estimation theory that is necessary to understand learning theory. Students will learn PAC learning theory. Needed theory on VC dimension will be introduced.
A. Optimum Machine Learning Performance Hypothesis testing - Bayesian, Minimax, Neyman Pearson Simple and composite hypothesis, UMP tests GLRT, Multiple hypothesis (paper showing relationship to neural network) Bayesian Optimum Estimation Short discussion of nonBayesian Bounds, focus on CRB (short) B. Guarenteedl Machine Learning Performance Mathematical formulation of machine learning (classification) How much training data needed in simple scenario (classification) PAC learning (classification) VC dimension PAC learnability based on VC dimension Generalized (Agnostic) PAC learning beyond classification (tradeoffs) Uniform Convergence and Fundamental Theorem of Statistical Learning
Mathematics and probability background of undergraduate engineer, computer science or mathematics student.
Rick S. Blum received a B.S.E.E from Penn State in 1984 and an M.S./Ph.D in EE from the University of Pennsylvania in 1987/1991. From 1984 to 1991 he was with GE Aerospace. Since 1991, he has been at Lehigh University. His research interests include machine learning and statistical analysis for cyber security, smart grid, communications, sensor networking, radar and sensor processing. He was an AE for IEEE Trans. on Signal Processing and for IEEE Communications Letters. He has edited special issues for IEEE Trans. on Signal Processing, IEEE Journal of Selected Topics in Signal Processing and IEEE Journal on Selected Areas in Communications. He was a member of the SAM Technical Committee (TC) of the IEEE Signal Processing Society. He was a member of the Signal Processing for Communications TC of the IEEE Signal Processing Society and is a member of the Communications Theory TC of the IEEE Communication Society. He was on the awards Committee of the IEEE Communication Society. Dr. Blum is a Fellow of the IEEE, an IEEE Signal Processing Society Distinguished Lecturer (twice), an IEEE Third Millennium Medal winner, a member of Eta Kappa Nu and Sigma Xi, and holds several patents. He was awarded an ONR Young Investigator Award and an NSF Research Initiation Award.
How can we develop machine learning methods that we can trust in high-risk applications? We need ML methods that know their own range of competence so that they can detect when input queries lie outside that range. This class will present several related areas of ML research that seek to achieve this goal including (a) classification with a "reject" option, (b) calibrated confidence estimation, (c) out of distribution detection, and (d) open category detection. The first two topics focus on problems where the training set and test set come from the same distribution, and the classifier must assess its own competence on each test instance. The second two topics can be viewed as applications of anomaly detection, so we will study anomaly detection methods for both featurized data and for signal data (e.g., images) where a good feature space must be learned. Our discussion of anomaly detection will be complementary to Peter Rousseeuw's course (which makes a good companion).
Niculescu-Mizil, A., & Caruana, R. (2005). Predicting good probabilities with supervised learning. Proceedings of the 22nd International Conference on Machine Learning ICML ’05, (2005), 625–632. http://doi.org/10.1145/1102351.1102430
Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On Calibration of Modern Neural Networks. http://arxiv.org/abs/1706.04599
Romano, Y., Patterson, E., & Candès, E. J. (2019). Conformalized Quantile Regression. http://arxiv.org/abs/1905.03222
Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction. Journal of Machine Learning Research, 9, 371–421. Retrieved from http://arxiv.org/abs/0706.3188
Cortes, C., DeSalvo, G., & Mohri, M. (2016). Learning with rejection. Lecture Notes in Artificial Intelligence, 9925 LNAI, 67–82. http://doi.org/10.1007/978-3-319-46379-7_5
Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2012). Isolation-Based Anomaly Detection. ACM Transactions on Knowledge Discovery from Data, 6(1), 1–39. http://doi.org/10.1145/2133360.2133363
Emmott, A., Das, S., Dietterich, T., Fern, A., & Wong, W.-K. (2015). Systematic construction of anomaly detection benchmarks from real data. https://arxiv.org/abs/1503.01158
Siddiqui, A., Fern, A., Dietterich, T. G., & Das, S. (2016). Finite Sample Complexity of Rare Pattern Anomaly Detection. In Proceedings of UAI-2016 (p. 10). http://auai.org/uai2016/proceedings/papers/226.pdf
Bulusu, S., Kailkhura, B., Li, B., Varshney, P. K., & Song, D. (2020). Anomalous Instance Detection in Deep Learning: A Survey. ArXiv, 2003.06979(v1). http://arxiv.org/abs/2003.06979
Bendale, A., & Boult, T. (2016). Towards Open Set Deep Networks. In CVPR 2016 (pp. 1563–1572). http://doi.org/10.1109/CVPR.2016.173
Liu, S., Garrepalli, R., Dietterich, T. G., Fern, A., & Hendrycks, D. (2018). Open Category Detection with PAC Guarantees. Proceedings of the 35th International Conference on Machine Learning, PMLR, 80, 3169–3178. http://proceedings.mlr.press/v80/liu18e.html
Boult, T. E., Cruz, S., Dhamija, A., Gunther, M., Henrydoss, J., & Scheirer, W. (2019). Learning and the Unknown: Surveying Steps Toward Open World Recognition. AAAI 2019.
Familiarity with standard machine learning methods such as decision trees, random forests, and support vector machines. Basic knowledge of deep learning for images. Basic knowledge of probability and principle component analysis.
Thomas Dietterich (PhD Stanford, 1985) is Distinguished Professor (Emeritus) of Computer Science at Oregon State University. Dietterich is one of the pioneers of the field of Machine Learning and has authored more than 200 refereed publications and two books. His current research topics include robust artificial intelligence (calibration and anomaly detection), robust human-AI systems, and applications in sustainability. He is a former president of the International Machine Learning Society (the parent organization of ICML) and the Association for the Advancement of Artificial Intelligence. He is one of the moderators of the cs.LG category on arXiv.
Inference of functions from data is ubiquitous in Statistical Learning. This course deals with Gaussian process (GP) based approaches that not only learn over a class of nonlinear functions, but also quantify the associated uncertainty. To cope with the curse of dimensionality, random feature Fourier (RF) vectors lead to parametric GP-RF function models, that offer scalable estimators. The course will next focus on online learning with ensembles (E) of GP-RF learners, each with a distinct kernel belonging to a prescribed dictionary, and jointly learning a much richer class of functions. Whether in batch or online forms, EGPs remain robust to dynamics captured by adaptive Kalman filters. Being able to cope with unknown dynamics and quantify uncertainty, are critical especially in adversarial settings. EGP performance can be refined online, and it is benchmarked using regret analysis. Further, the course will cross-fertilize ideas from Deep Gaussian Processes and EGPs in order to gain degrees of freedom. Broader applicability of EGPs will be also demonstrated for interactive optimization and policy evaluation in reinforcement learning.
Day 1: Online Scalable Learning Adaptive to Unknown Dynamics and Graphs – Part I: Multi-kernel Approaches
Day 2: Online Scalable Learning with Adaptivity and Robustness – Part II: Deep and Ensemble GPs
Prof. Georgios B. Giannakis, ADC Chair in Wireless Telecommunications and McKnight Presidential Chair in ECE, University of Minnesota. Georgios B. Giannakis (Fellow’97) received his Diploma in Electrical Engr. (EE) from the Ntl. Tech. Univ. of Athens, Greece, 1981. From 1982 to 1986 he was with the U. of Southern California (USC), where he received his MSc. in EE, 1983, MSc. in Mathematics, 1986, and Ph.D. in EE, 1986. He was with the U. of Virginia from 1987 to 1998, and since 1999 he has been with the U. of Minnesota, where he holds a Chair in Wireless Communications, a U. of Minnesota McKnight Presidential Chair in ECE, and serves as director of the Digital Technology Center. His general interests span the areas of statistical learning, communications, and networking - subjects on which he has published more than 460 journal papers, 760 conference papers, 26 book chapters, two edited books and two research monographs. Current research focuses on Data Science with applications to brain, and power networks with renewables. He is the (co-) inventor of 33 patents issued, and the (co-) recipient of 9 best journal paper awards from the IEEE Signal Processing (SP) and Communications Societies, including the G. Marconi Prize Paper Award in Wireless Communications. He also received the IEEE-SPS Nobert Wiener Society Award (2019); Technical Achievement Awards from the SP Society (2000) and from EURASIP (2005); the IEEE ComSoc Education Award (2019); the G. W. Taylor Award for Distinguished Research from the University of Minnesota, and the IEEE Fourier Technical Field Award (inaugural recipient in 2015). He is a Fellow of the National Academy of Inventors, IEEE and EURASIP, and has served the IEEE in a number of posts, including that of a Distinguished Lecturer for the IEEE-SPS.
Deep learning has become one of the most widely used tools in modern science and engineering, leading to breakthroughs in many areas and disciplines ranging from computer vision to natural language processing to physics and medicine. This mini-course will introduce the basics of machine learning and classification theory based on statistical learning and describe two classes of popular algorithms in depth: decision and rule-based methods (decision trees, decision rules, bagging and boosting, random forests) and deep neural network-based models of various types (fully-connected, convolutional, recurrent, recursive and graph neural networks). The course will focus on practical applications in analysis of large scientific data, interpretability, uncertainty estimation and how to best extract meaningful features, while implementing realtime deep learning in software and hardware. No previous machine learning background is required.
None
Sergei Gleyzer is a particle physicist and university professor, working at the interface of particle physics and machine learning towards more intelligent systems to extract meaningful information from the data collected by the Large Hadron Collider (LHC), the world’s highest-energy particle physics experiment located at the CERN laboratory, near Geneva Switzerland. He is the a co-discover of the Higgs Boson and founder of several major machine learning initiatives such as the Inter-experimental Machine Learning Working Group and Compact Muon Solenoid experiment’s Machine Learning Forum. Professor Gleyzer is working on applying advanced machine learning methods to searches for new physics, such as dark matter.
AI and 3D Geometry for Self-Supervised 3D Scene Understanding
3D scene understanding is a fundamental problem in Computer Vision, where one wants to not only recognise the objects present in a scene from captured images, but also retrieve their 3D properties including their poses and shapes. With the development of deep learning approaches, this field has made a remarkable progress. Unfortunately, all recent methods are trained in a supervised way on 3D annotated data. Such a supervised approach has several drawbacks: 3D manual annotations are particularly cumbersome to create and creating realistic virtual 3D scenes also has a high cost; Supervised methods also tend to generalize poorly to other datasets; Even more importantly, they can only be as good as the training 3D annotations, and mistakes in manual annotations are actually common in existing datasets. If one wants to go further and consider more scenes without creating real or synthetic training datasets, it is important to consider new directions.
In this lecture, we will present and discuss self-supervised approaches, more exactly auto-labelling methods for automatically creating 3D annotations. In particular, we will review the Monte Carlo Tree Search (MCTS), which is a general discrete AI algorithm for learning to play games, and show how it can be used for 3D scene understanding. For this, we will consider applications to hand and object pose estimation and indoor scene analysis.
Basic knowledge of Deep Learning applied to computer vision and 3D Geometry
Vincent Lepetit is a director of research at ENPC ParisTech since 2019. Prior to being at ENPC, he was a full professor at the Institute for Computer Graphics and Vision, Graz University of Technology, Austria, and before that, a senior researcher at the Computer Vision Laboratory (CVLab) of EPFL, Switzerland. His research interest are at the interface between Machine Learning and 3D Computer Vision, and currently focus on 3D scene understanding from images. He often serves as an area chair for the major computer vision conferences (CVPR, ICCV, ECCV) and is an associate editor for PAMI, IJCV, and CVIU.
The field of graph signal processing extends classical signal processing tools to signals (data) with an irregular structure that can be characterized my means of a graph (e.g., network data). One of the cornerstones of this field are graph filters, direct analogues of time-domain filters, but intended for signals defined on graphs. In this course, we introduce the field of graph signal processing and specifically give an overview of the graph filtering problem. We look at the family of finite impulse response (FIR) and infinite impulse response (IIR) graph filters and show how they can be implemented in a distributed manner. To further limit the communication and computational complexity of such a distributed implementation, we also generalize the state-of-the-art distributed graph filters to filters whose weights show a dependency on the nodes sharing information. These so-called edge-variant graph filters yield significant benefits in terms of filter order reduction and can be used for solving specific distributed optimization problems with an extremely fast convergence. Finally, we will overview how graph filters can be used in deep learning applications involving data sets with an irregular structure. Different types of graph filters can be used in the convolution step of graph convolutional networks leading to different trade-offs in performance and complexity. The numerical results presented in this talk illustrate the potential of graph filters in distributed optimization and deep learning.
Basics in digital signal processing, linear algebra, optimization and machine learning.
Geert Leus received the M.Sc. and Ph.D. degree in Electrical Engineering from the KU Leuven, Belgium, in June 1996 and May 2000, respectively. Geert Leus is now an "Antoni van Leeuwenhoek" Full Professor at the Faculty of Electrical Engineering, Mathematics and Computer Science of the Delft University of Technology, The Netherlands. His research interests are in the broad area of signal processing, with a specific focus on wireless communications, array processing, sensor networks, and graph signal processing. Geert Leus received a 2002 IEEE Signal Processing Society Young Author Best Paper Award and a 2005 IEEE Signal Processing Society Best Paper Award. He is a Fellow of the IEEE and a Fellow of EURASIP. Geert Leus was a Member-at-Large of the Board of Governors of the IEEE Signal Processing Society, the Chair of the IEEE Signal Processing for Communications and Networking Technical Committee, a Member of the IEEE Sensor Array and Multichannel Technical Committee, and the Editor in Chief of the EURASIP Journal on Advances in Signal Processing. He was also on the Editorial Boards of the IEEE Transactions on Signal Processing, the IEEE Transactions on Wireless Communications, the IEEE Signal Processing Letters, and the EURASIP Journal on Advances in Signal Processing. Currently, he is the Chair of the EURASIP Technical Area Committee on Signal Processing for Multisensor Systems, a Member of the IEEE Signal Processing Theory and Methods Technical Committee, a Member of the IEEE Big Data Special Interest Group, an Associate Editor of Foundations and Trends in Signal Processing, and the Editor in Chief of EURASIP Signal Processing.
Machine Learning and Statistics have many intersections, yet there are many distinct differences. In this course, we will examine the differences and similarities to better understand where each side is coming from and where they are going. Based on these understandings we will look at ways that machine learning tasks can be enhanced with statistical thinking as well as methods. Finally we will learn about how these methods and tools are used in real life with examples drawn from pharmaceutical research and development areas.
Introductory-level Machine Learning, Basic Statistics
Andy Liaw has been doing research and applying Statistics and Machine Learning methods to drug discovery areas such as high throughput screening, pharmacology, cheminformatics, proteomics, and biomarkers for the past 20 years. He is the author of the R package randomForest and had made several contributions to the open source R software for Statistics and Data Science. He is currently Senior Principal Scientist in Merck Research Laboratories. He received his Ph.D. in Statistics from Texas A&M University.
The last 40 years have seen a dramatic progress in machine learning and statistical methods for speech and language processing like speech recognition, handwriting recognition and machine translation. Many of the key statistical concepts had originally been developed for speech recognition and language translation. Examples of such key concepts are the Bayes decision rule for minimum error rate and sequence-to-sequence processing using approaches like the alignment mechanism based on hidden Markov models and the attention mechanism based on neural networks. Recently the accuracy of speech recognition and machine translation could be improved significantly by the use of artificial neural networks and specific architectures, such as deep feedforward multi-layer perceptrons and recurrent neural networks, attention and transformer architectures. We will discuss these approaches in detail and how they form part of the probabilistic approach.
Familiarity with linear algebra, numerical mathematics, probability and statistics, elementary machine learning.
Hermann Ney is a full professor of computer science at RWTH Aachen University, Germany. His main research interests lie in the area of statistical classification, machine learning, neural networks and human language technology and specific applications to speech recognition, machine translation and handwriting recognition.
In particular, he has worked on dynamic programming and discriminative training for speech recognition, on language modelling and on machine translation. His work has resulted in more than 700 conference and journal papers (h-index 102, 60000+ citations; estimated using Google scholar). He and his team contributed to a large number of European (e.g. TC-STAR, QUAERO, TRANSLECTURES, EU-BRIDGE) and American (e.g. GALE, BOLT, BABEL) large-scale joint projects.
Hermann Ney is a fellow of both IEEE and ISCA (Int. Speech Communication Association). In 2005, he was the recipient of the Technical Achievement Award of the IEEE Signal Processing Society. In 2010, he was awarded a senior DIGITEO chair at LIMIS/CNRS in Paris, France. In 2013, he received the award of honour of the International Association for Machine Translation. In 2016, he was awarded an advanced grant of the European Research Council (ERC).
In the 1980s, classical robotics already reached a high level of maturity and it was able to produce large factories. For example, cars factories were completely automated. Despite these impressive achievements, unlike personal computers, modern service robots still did not leave the factories and take a seat as robot companions on our side. The reason is that it is still harder for us to program robots than computers. Usually, modern companion robots learn their duties by a mixture of imitation and trial-and-error. This new way of programming robots has a crucial consequence in the field of industry: the programming cost increases, making mass production impossible. However, in research, this approach had a great influence and over the last ten years all top universities in the world conduct research in this area. The success of these new methods has been demonstrated in a variety of sample scenarios: autonomous helicopters learning from teachers complex maneuver, walking robot learning impressive balancing skills, self-guided cars hurtling at high speed in racetracks, humanoid robots balancing a bar in their hand and anthropomorphic arms cooking pancakes. Accordingly, this class serves as an introduction to autonomous robot learning. The class focuses on approaches from the fields of robotics, machine learning, model learning, imitation learning, reinforcement learning and motor primitives. Application scenarios and major challenges in modern robotics will be presented as well. We pay particular attention to interactions with the participants of the lecture, asking multiple question and appreciating enthusiastic students. We also offer a parallel project, the Robot Learning: Integrated Project. It is designed to enable participants to understand robot learning in its full depth by directly applying methods presented in this class to real or simulated robots. We suggest motivated students to attend it as well, either during or after the Robot Learning Class!
Contents Robot Model Learning Imitation Learning Optimal Control Robot Reinforcement Learning Policy Search Robot Inverse Reinforcement Learning
N.A.
Basic Machine Learning
Jan Peters is a full professor (W3) for Intelligent Autonomous Systems at the Computer Science Department of the Technische Universitaet Darmstadt. Jan Peters has received the Dick Volz Best 2007 US PhD Thesis Runner-Up Award, the Robotics: Science & Systems - Early Career Spotlight, the INNS Young Investigator Award, and the IEEE Robotics & Automation Society's Early Career Award as well as numerous best paper awards. In 2015, he received an ERC Starting Grant and in 2019, he was appointed as an IEEE Fellow. Despite being a faculty member at TU Darmstadt only since 2011, Jan Peters has already nurtured a series of outstanding young researchers into successful careers. These include new faculty members at leading universities in the USA, Japan, Germany and Holland, postdoctoral scholars at top computer science departments (including MIT, CMU, and Berkeley) and young leaders at top AI companies (including Amazon, Google and Facebook). Jan Peters has studied Computer Science, Electrical, Mechanical and Control Engineering at TU Munich and FernUni Hagen in Germany, at the National University of Singapore (NUS) and the University of Southern California (USC). He has received four Master's degrees in these disciplines as well as a Computer Science PhD from USC. Jan Peters has performed research in Germany at DLR, TU Munich and the Max Planck Institute for Biological Cybernetics (in addition to the institutions above), in Japan at the Advanced Telecommunication Research Center (ATR), at USC and at both NUS and Siemens Advanced Engineering in Singapore. He has led research groups on Machine Learning for Robotics at the Max Planck Institutes for Biological Cybernetics (2007-2010) and Intelligent Systems (2010-2021).
I-Requisites for a Cognitive Architecture (intermediate)
II- Putting it all together (intermediate)
III- Current work (advanced)
Jose C. Principe is a Distinguished Professor of Electrical and Computer Engineering at the University of Florida where he teaches advanced signal processing, machine learning and artificial neural networks (ANNs). He is Eckis Professor and the Founder and Director of the University of Florida Computational NeuroEngineering Laboratory (CNEL) www.cnel.ufl.edu. The CNEL Lab innovated signal and pattern recognition principles based on information theoretic criteria, as well as filtering in functional spaces. His secondary area of interest has focused in applications to computational neuroscience, Brain Machine Interfaces and brain dynamics. Dr. Principe is a Fellow of the IEEE, AIMBE, and IAMBE. Dr. Principe received the Gabor Award, from the INNS, the Career Achievement Award from the IEEE EMBS and the Neural Network Pioneer Award, of the IEEE CIS. He has more than 38 patents awarded over 800 publications in the areas of adaptive signal processing, control of nonlinear dynamical systems, machine learning and neural networks, information theoretic learning, with applications to neurotechnology and brain computer interfaces. He directed 97 Ph.D. dissertations and 65 Master theses. He wrote in 2000 an interactive electronic book entitled “Neural and Adaptive Systems” published by John Wiley and Sons and more recently co-authored several books on “Brain Machine Interface Engineering” Morgan and Claypool, “Information Theoretic Learning”, Springer, “Kernel Adaptive Filtering”, Wiley and “System Parameter Adaption: Information Theoretic Criteria and Algorithms”, Elsevier. He has received four Honorary Doctor Degrees, from Finland, Italy, Brazil and Colombia, and routinely serves in international scientific advisory boards of Universities and Companies. He has received extensive funding from NSF, NIH and DOD (ONR, DARPA, AFOSR).
This course will deal with deep learning for unimodal, multimodal, and multisensorial signal analysis and synthesis. Modalities mainly include audio, video, text, or physiological signals. Methods shown will, however, be applicable to a broad range of further signal types. We will first deal with pre-processing for denoising or dereverberation or package loss concealment. This will be followed by representation learning such as by convolutional neural networks or sequence-to-sequence encoder-decoder architectures as basis for end-to-end learning from raw signals or symbolic representation. Then, we shall discuss modelling for decision making such as by recurrent neural networks with long-short-term memory or gated recurrent units including handling dynamics by connectionist temporal classification. This will also include discussion of the usage of attention on different levels. We will further elaborate on the impact of topologies including multiple targets with shared layers, and how to move towards self-shaping networks in the sense of Automatic Machine Learning. In a last part, we will deal with some practical questions. These include data efficiency, such as by weak supervision with the human in the loop, data augmentation, active and semi-supervised learning, transfer learning, self-learning, or generative adversarial networks. Further, we will have a glance at modelling efficiency such as by squeezing networks. Privacy, trustability, and explainability enhancing solutions will include federated learning, confidence measurement, and diverse means of visualization. The content shown will be accompanied by open-source implementations of according toolkits available on github. Application examples will mainly come from the domains of Affective Computing, and mHealth.
The Handbook of Multimodal-Multisensor Interfaces. Vol. 2, S. Oviatt, B. Schuller, P.R. Cohen, D. Sonntag, G. Potamianos, A. Krüger (eds.), 2018
Basic Machine Learning and Signal Processing knowledge.
Björn W. Schuller received his diploma, doctoral degree, habilitation, and Adjunct Teaching Professor in Machine Intelligence and Signal Processing all in EE/IT from TUM in Munich/Germany. He is Full Professor of Artificial Intelligence and the Head of GLAM at Imperial College London/UK, Full Professor and Chair of Embedded Intelligence for Health Care and Wellbeing at the University of Augsburg/Germany, co-founding CEO and current CSO of audEERING – an Audio Intelligence company based near Munich and in Berlin/Germany, and permanent Visiting Professor at HIT/China amongst other Professorships and Affiliations. Previous stays include Full Professor at the University of Passau/Germany, and Researcher at Joanneum Research in Graz/Austria, and the CNRS-LIMSI in Orsay/France. He is a Fellow of the IEEE and Golden Core Awardee of the IEEE Computer Society, Fellow of the ISCA, Fellow of the BCS, President-Emeritus of the AAAC, and Senior Member of the ACM. He (co-)authored 900+ publications (30k+ citations, h-index=83), is Field Chief Editor of Frontiers in Digital Health and was Editor in Chief of the IEEE Transactions on Affective Computing amongst manifold further commitments and service to the community. His 30+ awards include having been honoured as one of 40 extraordinary scientists under the age of 40 by the WEF in 2015. He served as Coordinator/PI in 15+ European Projects, is an ERC Starting Grantee, and consultant of companies such as Barclays, GN, Huawei, or Samsung.
Generative Modeling (GM) refers to building a model of data, p(x), we can sample from, e.g., x is an image. It requires building a distribution of data and latent variables. On the other hand Discriminative Modeling refers to tasks such as regression and classification, which estimate conditional distributions such as p(class|x). Even for prediction, GMs are useful due to: data efficiency and semi-supervised learning, model checking by sampling, and understanding. All GMs represent probability distributions: some allow distribution to be evaluated explicitly, others do not allow distribution to be evaluated but allow sampling. Generative Adversarial Networks (GANs) can learn high-dimensional, complex real data distributions without relying on any assumptions. They can simply generate realistic samples from latent space. This has led to various applications, such as image synthesis, image attribute editing, image translation, domain adaptation and others.
A course on Introductory machine learning covering the main topics such as described in https://cedar.buffalo.edu/~srihari/CSE574/index.html
Srihari is a SUNY Distinguished Professor in the Department of Computer Science and Engineering at the University at Buffalo, The State University of New York. He teaches a sequence of three courses in artificial intelligence and machine learning: (i) introduction to machine learning, (ii) probabilistic graphical models and (iii) deep learning. Srihari’s work led to the world’s first automated system for reading handwritten postal addresses. It was deployed by the United States Postal Service saving hundreds of millions of dollars in labor costs. A side-effect was that it led to the task of recognizing handwritten digits to be considered the fruit-fly of AI methods. Srihari also spent a decade developing AI and machine learning methods for forensic pattern evidence such as latent prints, handwriting and footwear impressions. In particular, quantifying the value of handwriting evidence-- to allow presenting such testimony in US courts.
Srihari's honors include: Fellow of the IEEE, Fellow of the International Association for Pattern Recognition and distinguished alumnus of the Ohio State University College of Engineering Srihari received a B.Sc. from the Bangalore University, a B.E. from the Indian Institute of Science and a Ph.D. in Computer and Information Science from the Ohio State University.
The success of deep-learning hinges on intermediate representations: transformations of the data on which statistical learning is easier. Deep architectures can extract very rich and powerful representations, but it needs huge volumes of data. In this course, we will study the fundamentals of simple representations. Simple representations are interesting because they can be learned in limited data settings. We will also use them to provide didactic cases to understand how to build statistical models from data. The goal of the course is to provide the basic mathematical concepts that underly successful representation extracted in limited data settings.
— Shallow representations: what and why? — Matrix factorizations and its variants: — From PCA to ICA — Sparse dictionary learning: formulation and efficient solvers — Word vectors demystified — Fisher kernels: vector representations from a data model — Theory: from likelihood to representation — Encoding strings and text — Encoding covariances
— General knowledge of statistical learning — Basic knowledge of probability — Basic knowledge of linear algebra
Gaël Varoquaux is a computer-science researcher at Inria. His research focuses on statistical learning tools for data science and scientific inference. He has pioneered the use of machine learning on brain images to map cognition and pathologies. More generally, he develops tools to make machine learning easier, with statistical models suited for real-life, uncurated data, and software for data science. He co-funded scikit-learn, one of the reference machine-learning toolboxes, and helped build various central tools for data analysis in Python. Varoquaux has contributed key methods for learning on spatial data, matrix factorizations, and modeling covariance matrices. He has a PhD in quantum physics and is a graduate from Ecole Normale Superieure, Paris.
The past few years have seen a dramatic increase in the performance of recognition systems thanks to the introduction of deep networks for representation learning. However, the mathematical reasons for this success remain elusive. For example, a key issue is that the neural network training problem is nonconvex, hence optimization algorithms are not guaranteed to return a global minima. The first part of this tutorial will overview recent work on the theory of deep learning that aims to understand how to design the network architecture, how to regularize the network weights, and how to guarantee global optimality. The second part of this tutorial will present sufficient conditions to guarantee that local minima are globally optimal and that a local descent strategy can reach a global minima from any initialization. Such conditions apply to problems in matrix factorization, tensor factorization and deep learning. The third part of this tutorial will present an analysis of dropout for matrix factorization, and establish connections
Basic understanding of sparse and low-rank representation and non-convex optimization.
Rene Vidal is a Professor of Biomedical Engineering and the Innaugural Director of the Mathematical Institute for Data Science at The Johns Hopkins University. His research focuses on the development of theory and algorithms for the analysis of complex high-dimensional datasets such as images, videos, time-series and biomedical data. Dr. Vidal has been Associate Editor of TPAMI and CVIU, Program Chair of ICCV and CVPR, co-author of the book 'Generalized Principal Component Analysis' (2016), and co-author of more than 200 articles in machine learning, computer vision, biomedical image analysis, hybrid systems, robotics and signal processing. He is a fellow of the IEEE, IAPR and Sloan Foundation, a ONR Young Investigator, and has received numerous awards for his work, including the 2012 J.K. Aggarwal Prize for "outstanding contributions to generalized principal component analysis (GPCA) and subspace clustering in computer vision and pattern recognition” as well as best paper awards in machine learning, computer vision, controls, and medical robotics.
The goal is to introduce the recent advances in object tracking based on deep learning and related approaches. Performance evlaution and challenging factors in this field will be discussed.
Basic knowledge in computer vision and intermediate knowledge in deep learning
Ming-Hsuan Yang is a Professor of Electrical Engineering and Computer Science at University of California, Merced, and a Research Scientist at Google Cloud. He serves as a program co-chair of IEEE International Conference on Computer Vision (ICCV) in 2019, program co-chair of Asian Conference on Computer Vision (ACCV) in 2014, and general co-chair of ACCV 2016. He has served as an associate editor of the IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) from 2007 to 2011, and currently serves as an associate editor of the International Journal of Computer Vision (IJCV), Computer Vision and Image Understanding (CVIU), Image and Vision Computing (IVC) and Journal of Artificial Intelligence (JAIR). Yang received the Google Faculty Award in 2009 and the Faculty Early Career Development (CAREER) award from the National Science Foundation in 2012. In 2015. He received paper awards from UIST 2017, CVPR 2018 and ACCV 2018. He is an IEEE Fellow.