
Cellular Automata: Tutorial

Jarkko Kari

Department of Mathematics, University of Turku, Finland

TUCS(Turku Centre for Computer Science), Turku, Finland

Cellular Automata: examples

A Cellular Automaton (CA) is an infinite, regular lattice of

simple finite state machines that change their states

synchronously, according to a local update rule that specifies

the new state of each cell based on the old states of its

neighbors.

Cellular Automata: examples

A Cellular Automaton (CA) is an infinite, regular lattice of

simple finite state machines that change their states

synchronously, according to a local update rule that specifies

the new state of each cell based on the old states of its

neighbors.

The most widely known example is the Game-of-Life by

John Conway. It is a two-dimensional CA which means that

the space is an infinite checker-board. Each cell (=square of

the checker-board) has two possible states, ”Alive” and

”Dead”, represented by drawing the corresponding square

black or white, respectively.

The local update rule asks each cell to check the present states

of the eight surrounding cells.

• If the cell is alive then it stays alive (survives) iff it has

two or three live neighbors. Otherwise it dies of loneliness

or overcrowding.

The local update rule asks each cell to check the present states

of the eight surrounding cells.

• If the cell is alive then it stays alive (survives) iff it has

two or three live neighbors. Otherwise it dies of loneliness

or overcrowding.

• If the cell is dead then it becomes alive iff it has exactly

three living neighbors.

The local update rule asks each cell to check the present states

of the eight surrounding cells.

• If the cell is alive then it stays alive (survives) iff it has

two or three live neighbors. Otherwise it dies of loneliness

or overcrowding.

• If the cell is dead then it becomes alive iff it has exactly

three living neighbors.

All cells apply this rule simultaneously. As the process is

repeated over and over again, a dynamical system is obtained

that exhibits surprisingly complex behavior.

The local update rule asks each cell to check the present states

of the eight surrounding cells.

• If the cell is alive then it stays alive (survives) iff it has

two or three live neighbors. Otherwise it dies of loneliness

or overcrowding.

• If the cell is dead then it becomes alive iff it has exactly

three living neighbors.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

The local update rule asks each cell to check the present states

of the eight surrounding cells.

• If the cell is alive then it stays alive (survives) iff it has

two or three live neighbors. Otherwise it dies of loneliness

or overcrowding.

• If the cell is dead then it becomes alive iff it has exactly

three living neighbors.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

The local update rule asks each cell to check the present states

of the eight surrounding cells.

• If the cell is alive then it stays alive (survives) iff it has

two or three live neighbors. Otherwise it dies of loneliness

or overcrowding.

• If the cell is dead then it becomes alive iff it has exactly

three living neighbors.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

The local update rule asks each cell to check the present states

of the eight surrounding cells.

• If the cell is alive then it stays alive (survives) iff it has

two or three live neighbors. Otherwise it dies of loneliness

or overcrowding.

• If the cell is dead then it becomes alive iff it has exactly

three living neighbors.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life)

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life), oscillate periodically (oscillators)

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life), oscillate periodically (oscillators)

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life), oscillate periodically (oscillators), glide through

space as they oscillate (spaceships)

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life), oscillate periodically (oscillators), glide through

space as they oscillate (spaceships)

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life), oscillate periodically (oscillators), glide through

space as they oscillate (spaceships)

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life), oscillate periodically (oscillators), glide through

space as they oscillate (spaceships)

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life), oscillate periodically (oscillators), glide through

space as they oscillate (spaceships)

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life), oscillate periodically (oscillators), glide through

space as they oscillate (spaceships)

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life), oscillate periodically (oscillators), glide through

space as they oscillate (spaceships)

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life), oscillate periodically (oscillators), glide through

space as they oscillate (spaceships)

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life), oscillate periodically (oscillators), glide through

space as they oscillate (spaceships)

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life), oscillate periodically (oscillators), glide through

space as they oscillate (spaceships), emit spaceships (guns),

etc.

Game of Life was invented in 1970 by John Conway. Since

then many interesting ”creatures” living in this universe have

been identified. These include patterns that remain unchanged

(still life), oscillate periodically (oscillators), glide through

space as they oscillate (spaceships), emit spaceships (guns),

etc.

Using such behaviors it is possible to implement information

carrying signals and logical operations on these signals. It was

soon discovered that Game-of-Life is a universal computer:

for any given Turing machine M and input word w one can

effectively construct a start configuration c to the Game-of-Life

such that all cells eventually die if and only if M accepts w.

Another famous computationally universal CA is rule 110 by

S.Wolfram. This is a one-dimensional CA with binary state set

{0, 1}, i.e. a two-way infinite sequence of 0’s and 1’s. Each cell

is updated based on its old state and the states of its left and

right neighbors as follows:

111 −→ 0
110 −→ 1
101 −→ 1
100 −→ 0
011 −→ 1
010 −→ 1
001 −→ 1
000 −→ 0

Rule 110 was proved universal by M.Cook while working for

Wolfram. Analogously to Game-of-Life, it is possible to

identify signals that transmit information, and collisions that

represent logic operations, but building a computer in the

one-dimensional space involves solving difficult issues such as

designing ways for the signals to cross each other.

Rule 110 was proved universal by M.Cook while working for

Wolfram. Analogously to Game-of-Life, it is possible to

identify signals that transmit information, and collisions that

represent logic operations, but building a computer in the

one-dimensional space involves solving difficult issues such as

designing ways for the signals to cross each other.

One-dimensional, binary state CA that use the nearest

neighbors to determine their next state are called elementary

cellular automata. There are only 28 = 256 elementary CA,

and it is quite remarkable that one of them is computationally

universal.

Elementary CA were experimentally investigated in the 1980’s

by S.Wolfram. He designed a simple naming scheme that is

still used today. The local update rule gets fully specified

when one gives the next state for all 8 different contexts:

111 −→ b7

110 −→ b6

101 −→ b5

100 −→ b4

011 −→ b3

010 −→ b2

001 −→ b1

000 −→ b0

The Wolfram number of this CA is the integer whose binary

expansion is

b7b6b5b4b3b2b1b0.

Elementary CA are known by their Wolfram numbers.

For example, elementary CA number 102 has local update rule

111 −→ 0
110 −→ 1
101 −→ 1
100 −→ 0
011 −→ 0
010 −→ 1
001 −→ 1
000 −→ 0

In this rule

a b c −→ b + c (mod 2)

and it will be referred to as the xor-CA.

A space-time diagram is a pictorial representation of the

time evolution of the CA where consecutive configurations are

drawn under each other. Horizontal lines represent space, and

time increases downwards.

For example, the space-time diagram of the xor-CA starting

from a single cell in state 1 is the self-similar

Sierpinski-triangle:

?

Time

Wolfram classified elementary CA into four classes based on

experiments on random initial configurations.

(W1) Almost all initial configurations lead to the same

uniform fixed point configuration.

Rule 160

(W2) Almost all initial configurations lead to a periodically

repeating configuration.

Rule 108

(W3) Almost all initial configurations lead to chaotic,

”random looking” behavior.

Rule 126

(W4) Localized structures with complex interactions emerge.

Rule 110

Class (W4) has the most interesting behavior. In addition to

rule 110, also rule 54 is in class (W4). It is conjectured – but

not proved yet – that also rule 54 is computationally universal.

Outline of the talk(s)

(1) Definitions (configurations, neighborhoods, cellular

automata, reversibility, injectivity, surjectivity)

Outline of the talk(s)

(1) Definitions (configurations, neighborhoods, cellular

automata, reversibility, injectivity, surjectivity)

(2) Classical results (Hedlund’s theorem, balance in

surjective CA, Garden-Of-Eden theorem)

Outline of the talk(s)

(1) Definitions (configurations, neighborhoods, cellular

automata, reversibility, injectivity, surjectivity)

(2) Classical results (Hedlund’s theorem, balance in

surjective CA, Garden-Of-Eden theorem)

(3) Reversible CA (universality, billiard ball CA)

Outline of the talk(s)

(1) Definitions (configurations, neighborhoods, cellular

automata, reversibility, injectivity, surjectivity)

(2) Classical results (Hedlund’s theorem, balance in

surjective CA, Garden-Of-Eden theorem)

(3) Reversible CA (universality, billiard ball CA)

(4) Decidability questions (Wang tiles, domino problem,

snake tiles, undecidability of nilpotency, reversibility,

surjectivity, periodicity)

Outline of the talk(s)

(1) Definitions (configurations, neighborhoods, cellular

automata, reversibility, injectivity, surjectivity)

(2) Classical results (Hedlund’s theorem, balance in

surjective CA, Garden-Of-Eden theorem)

(3) Reversible CA (universality, billiard ball CA)

(4) Decidability questions (Wang tiles, domino problem,

snake tiles, undecidability of nilpotency, reversibility,

surjectivity, periodicity)

(5) Dynamical systems aspects (equicontinuity

classification, limit sets)

Cellular Automata: definitions

A Cellular Automaton (CA) is an infinite lattice of finite

state machines, called cells. The cells of a d-dimensional CA

are positioned at the integer lattice points of the d-dimensional

Euclidean space, and they are addressed by the elements of Z
d.

Let S be the finite state set. A configuration of the CA is a

function

c : Z
d −→ S

where c(~x) is the current state of the cell ~x. The set SZ
d

of all

configurations is uncountably infinite.

The cells change their states synchronously at discrete time

steps. The next state of each cell depends on the current states

of the neighboring cells according to an update rule. All cells

use the same rule, and the rule is applied to all cells at the

same time.

The cells change their states synchronously at discrete time

steps. The next state of each cell depends on the current states

of the neighboring cells according to an update rule. All cells

use the same rule, and the rule is applied to all cells at the

same time.

The neighboring cells may be the nearest cells surrounding

each cell, but more general neighborhoods can be specified by

giving the relative offsets of the neighbors. Let

N = (~x1, ~x2, . . . , ~xn)

be a vector of n distinct elements of Z
d. Then the neighbors

of a cell at location ~x ∈ Z
d are the n cells at locations

~x + ~xi, for i = 1, 2, . . . , n.

Typical two-dimensional neighborhoods:

c c

Von Neumann Moore

neighborhood neighborhood

{(0, 0), (±1, 0), (0,±1)} {−1, 0, 1} × {−1, 0, 1}

The smallest non-trivial one-dimensional neighborhood is the

size two neighborhood (0, 1). This is the neighborhood of the

xor-CA. This case is one-way as information can not flow to

the right.

If the configurations are shifted by half a cell at each step we

obtain the radius- 1
2 neighborhood. The space-time diagram is

then symmetric:

If the configurations are shifted by half a cell at each step we

obtain the radius- 1
2 neighborhood. The space-time diagram is

then symmetric:

The local rule is a function

f : Sn −→ S

where n is the size of the neighborhood. State f(a1, a2, . . . , an)

is the new state of a cell whose n neighbors were at states

a1, a2, . . . , an one time step before.

The local rule is a function

f : Sn −→ S

where n is the size of the neighborhood. State f(a1, a2, . . . , an)

is the new state of a cell whose n neighbors were at states

a1, a2, . . . , an one time step before.

This update rule then determines the global dynamics of the

CA: Configuration c becomes in one time step the

configuration e where, for all ~x ∈ Z
d,

e(~x) = f(c(~x + ~x1), c(~x + ~x2), . . . , c(~x + ~xn)).

We say that e = G(c), and call

G : SZ
d

−→ SZ
d

the global transition function of the CA.

We typically identify the CA with its global transition function

G and talk about cellular automaton function G, or simply

cellular automaton G. In algorithmic questions, however, the

CA is always specified by the finite items d (the dimension of

the space), S (the state set), N (the neighborhood) and f (the

local rule).

Cellular Automata can be viewed as one of the first models of

natural computing. They have many properties of the physical

world: They

• consist of large numbers of simple objects,

• operate in parallel,

• evolve based on local interactions,

• are homogeneous in time and space.

CA have traditionally been used in simulations of physical

systems. Good examples are lattice gases. These are CA

simulations of fluid or gas dynamics based on storing

individual molecules in the cells and implementing particle

interactions by the CA local rule.

Consider, for example, the simplest lattice gas model, called

HPP (due to Hardy, Pomeau and de Pazzis). It is a

two-dimensional CA where each cell can store up to four

moving particles. Each particle has a direction of movement

which can be up, down, left or right. There can be no more

than one particle of each direction in any individual cell. So

there are 24 = 16 possible states.

At each time step each particle moves to the neighboring cell

as indicated by the direction of the particle. If a cell receives

exactly two particles moving in opposite directions then the

directions of the particles are changed into the two orthogonal

directions.

At each time step each particle moves to the neighboring cell

as indicated by the direction of the particle. If a cell receives

exactly two particles moving in opposite directions then the

directions of the particles are changed into the two orthogonal

directions.

At each time step each particle moves to the neighboring cell

as indicated by the direction of the particle. If a cell receives

exactly two particles moving in opposite directions then the

directions of the particles are changed into the two orthogonal

directions.

At each time step each particle moves to the neighboring cell

as indicated by the direction of the particle. If a cell receives

exactly two particles moving in opposite directions then the

directions of the particles are changed into the two orthogonal

directions.

At each time step each particle moves to the neighboring cell

as indicated by the direction of the particle. If a cell receives

exactly two particles moving in opposite directions then the

directions of the particles are changed into the two orthogonal

directions.

At each time step each particle moves to the neighboring cell

as indicated by the direction of the particle. If a cell receives

exactly two particles moving in opposite directions then the

directions of the particles are changed into the two orthogonal

directions.

The local rule of HPP preserves the total number of particles

and their total momentum. These are conservation laws

that hold in the HPP automaton.

(Note, however, that HPP is not a realistic lattice gas model

as it satisfies incorrect conservation laws. For example, the

horizontal momentum is preserved on each horizontal line

individually.)

The local rule of HPP preserves the total number of particles

and their total momentum. These are conservation laws

that hold in the HPP automaton.

(Note, however, that HPP is not a realistic lattice gas model

as it satisfies incorrect conservation laws. For example, the

horizontal momentum is preserved on each horizontal line

individually.)

Even more interestingly, the HPP local rule fully preserves

information. There is another CA that traces back the

configurations in the reverse direction. This inverse CA

simply moves the particles to the opposite direction, and

applies the same collision rule as HPP.

HPP is an example of reversible CA (RCA), also called

invertible CA. These are CA functions G such that there is

another CA function F that is its inverse, i.e.

G ◦ F = F ◦ G = identity function.

RCA G and F are called the inverse automata of each other.

Clearly, in order to be reversible G has to be a bijective

function SZ
d

−→ SZ
d

.

HPP is an example of reversible CA (RCA), also called

invertible CA. These are CA functions G such that there is

another CA function F that is its inverse, i.e.

G ◦ F = F ◦ G = identity function.

RCA G and F are called the inverse automata of each other.

Clearly, in order to be reversible G has to be a bijective

function SZ
d

−→ SZ
d

.

A CA is called

• injective if G is one-to-one,

• surjective if G is onto,

• bijective if G is both one-to-one and onto.

Outline of the talk(s)

(1) Definitions (configurations, neighborhoods, cellular

automata, reversibility, injectivity, surjectivity)

(2) Classical results (Hedlund’s theorem, balance in

surjective CA, Garden-Of-Eden theorem)

(3) Reversible CA (universality, billiard ball CA)

(4) Decidability questions (Wang tiles, domino problem,

snake tiles, undecidability of nilpotency, reversibility,

surjectivity, periodicity)

(5) Dynamical systems aspects (equicontinuity

classification, limit sets)

Classical results (1960’s and 70’s)

It is useful to endow the set SZ
d

of configurations with the

Cantor topology, i.e. the topology generated by the

cylinder sets

Cyl(c,M) = {e ∈ SZ
d

| e(~x) = c(~x) for all ~x ∈ M}

for c ∈ SZ
d

and finite M ⊂ Z
d. The topology is compact, and

it is induced by a metric.

Classical results (1960’s and 70’s)

It is useful to endow the set SZ
d

of configurations with the

Cantor topology, i.e. the topology generated by the

cylinder sets

Cyl(c,M) = {e ∈ SZ
d

| e(~x) = c(~x) for all ~x ∈ M}

for c ∈ SZ
d

and finite M ⊂ Z
d. The topology is compact, and

it is induced by a metric.

All cylinder sets are clopen, i.e. closed and open. Cylinders for

fixed finite M ⊆ Z
d form a finite partitioning of SZ

d

.

Under this topology, a sequence c1, c2, . . . of configurations

converges to c ∈ SZ
d

if and only if for all cells ~x ∈ Z
d and for

all sufficiently large i holds

ci(~x) = c(~x).

Compactness of the topology means that all infinite sequences

c1, c2, . . . of configurations have converging subsequences.

All cellular automata are continuous transformations

SZ
d

−→ SZ
d

under the topology. Indeed, locality of the update rule means

that if

c1, c2, . . .

is a converging sequence of configurations then

G(c1), G(c2), . . .

converges as well, and

lim
i→∞

G(ci) = G(lim
i→∞

ci).

The translation τ determined by vector ~r ∈ Z
d is the

transformation

SZ
d

−→ SZ
d

that maps c 7→ e where

e(~x) = c(~x − ~r) for all ~x ∈ Z
d.

(It is the CA whose local rule is the identity function and

whose neighborhood consists of −~r alone.)

Since all cells of a CA use the same local rule, the CA

commutes with all translations:

G ◦ τ = τ ◦ G.

We have seen that all CA are continuous, translation

commuting maps SZ
d

−→ SZ
d

. The Curtis-Hedlund-

Lyndon theorem from 1969 states also the converse:

Theorem: A function G : SZ
d

−→ SZ
d

is a CA function if and

only if

(i) G is continuous, and

(ii) G commutes with translations.

Corollary: A cellular automaton G is reversible if and only if

it is bijective.

Proof: If G is a reversible CA function then G is by definition

bijective.

Conversely, suppose that G is a bijective CA function. Then G

has an inverse function G−1 that clearly commutes with the

shifts. The inverse function G−1 is also continuous because the

space SZ
d

is compact. It now follows from the Curtis-Hedlund-

Lyndon theorem that G−1 is a cellular automaton.

Corollary: A cellular automaton G is reversible if and only if

it is bijective.

Proof: If G is a reversible CA function then G is by definition

bijective.

Conversely, suppose that G is a bijective CA function. Then G

has an inverse function G−1 that clearly commutes with the

shifts. The inverse function G−1 is also continuous because the

space SZ
d

is compact. It now follows from the Curtis-Hedlund-

Lyndon theorem that G−1 is a cellular automaton.

The point of the corollary is that in bijective CA each cell can

determine its previous state by looking at the current states in

some bounded neighborhood around them.

Configurations that do not have a pre-image are called

Garden-Of-Eden -configurations. A CA has GOE

configurations if and only if it is non-surjective.

A finite pattern consists of a finite domain M ⊆ Z
d and an

assignment

p : M −→ S

of states. Configuration c contains the pattern if

τ(c)|M = p

for some translation τ .

Finite pattern is called an orphan for CA G if every

configuration containing the pattern is a GOE.

Let us show that every GOE contains an orphan:

Let c be a GOE, and let M1, M2, M3, . . . be such that

• each Mi ⊆ Z
d is finite,

• M1 ⊆ M2 ⊆ M3 ⊆ . . ., and

• M1 ∪ M2 ∪ M3 ∪ . . . = Z
d.

Let us show that every GOE contains an orphan:

Let c be a GOE, and let M1, M2, M3, . . . be such that

• each Mi ⊆ Z
d is finite,

• M1 ⊆ M2 ⊆ M3 ⊆ . . ., and

• M1 ∪ M2 ∪ M3 ∪ . . . = Z
d.

Since G is continuous also G(SZ
d

) is compact. Hence sets

Ci = Cyl(c, Mi) ∩ G(SZ
d

)

are compact and form a decreasing chain C1 ⊇ C2 ⊇ C3 ⊇ . . .

Let us show that every GOE contains an orphan:

Let c be a GOE, and let M1, M2, M3, . . . be such that

• each Mi ⊆ Z
d is finite,

• M1 ⊆ M2 ⊆ M3 ⊆ . . ., and

• M1 ∪ M2 ∪ M3 ∪ . . . = Z
d.

Since G is continuous also G(SZ
d

) is compact. Hence sets

Ci = Cyl(c, Mi) ∩ G(SZ
d

)

are compact and form a decreasing chain C1 ⊇ C2 ⊇ C3 ⊇ . . .

Because

C1 ∩ C2 ∩ C3 ∩ . . . = ∅

it follows from compactness of that Ci = ∅ for some i. Then

c|Mi

is an orphan.

All surjective CA have balanced local rules: for every a ∈ S

∣

∣f−1(a)
∣

∣ = |S|n−1.

All surjective CA have balanced local rules: for every a ∈ S

∣

∣f−1(a)
∣

∣ = |S|n−1.

Indeed, consider a non-balanced local rule such as rule 110

where five contexts give new state 1 while only three contexts

give state 0:

111 −→ 0
110 −→ 1
101 −→ 1
100 −→ 0
011 −→ 1
010 −→ 1
001 −→ 1
000 −→ 0

Consider finite patterns where state 0 appears in every third

position. There are 22(k−1) = 4k−1 such patterns where k is

the number of 0’s.

0 0 0 0

Consider finite patterns where state 0 appears in every third

position. There are 22(k−1) = 4k−1 such patterns where k is

the number of 0’s.

0 0 0 0

A pre-image of such a pattern must consist of k segments of

length three, each of which is mapped to 0 by the local rule.

There are 3k choices.

As for large values of k we have 3k < 4k−1, there are fewer

choices for the red cells than for the blue ones. Hence some

pattern has no pre-image and it must be an orphan.

One can also verify directly that pattern

01010

is an orphan of rule 110. It is the shortest orphan.

One can also verify directly that pattern

01010

is an orphan of rule 110. It is the shortest orphan.

Balance of the local rule is not sufficient for surjectivity. For

example, the majority CA (Wolfram number 232) is a

counter example. The local rule

f(a, b, c) = 1 if and only if a + b + c ≥ 2

is clearly balanced, but 01001 is an orphan.

Sometimes one state q ∈ S satisfying f(q, q, . . . , q) = q is

specified as a quiescent state. A configuration is called

finite if only a finite number of cells are non-quiescent:

q

q

q q

q

q

qq

q

q

q
q

q

q

If c is finite and G is a CA function then also G(c) is finite.

Let us denote by GF the restriction of G on the finite

configurations.

The Garden-Of-Eden -theorem by Moore (1962) and

Myhill (1963) states that G is surjective if and only if GF is

injective. Let us show this using rule 110 as a running example.

1) G not surjective =⇒ GF not injective:

Since rule 110 is not surjective it has an orphan 01010 of width

five. Consider a segment of length 5k − 2, for some k, and

finite configurations c that are quiescent outside this segment.

There are 25k−2 = 32k/4 such configurations.

0 0 0 00 0

5k-2

1) G not surjective =⇒ GF not injective:

The non-quiescent part of G(c) is within a segment of length

5k. Partition this segment into k parts of length 5. Pattern

01010 cannot appear in any part, so only 25 − 1 = 31 different

patterns show up in the subsegments. There are at most 31k

possible configurations G(c).

0 0 0 00 0

00 0 0

5k-2

5k

1) G not surjective =⇒ GF not injective:

The non-quiescent part of G(c) is within a segment of length

5k. Partition this segment into k parts of length 5. Pattern

01010 cannot appear in any part, so only 25 − 1 = 31 different

patterns show up in the subsegments. There are at most 31k

possible configurations G(c).

0 0 0 00 0

00 0 0

5k-2

5k

As 32k/4 > 31k for large k, there are more choices for red than

blue segments. So there must exist two different red segments

with the same image.

2) GF not injective =⇒ G not surjective:

In rule 110

0 10 1 0 1 0 0 0 10 0 1 1 0 0

11 1 1 1 0 11 1 1 1 0

p q

so patterns p and q of length 8 can be exchanged to each other

in any configuration without affecting its image. There exist

just

28 − 1 = 255

essentially different blocks of length 8.

2) GF not injective =⇒ G not surjective:

Consider a segment of 8k cells, consisting of k parts of length

8. Patterns p and q are exchangeable, so the segment has at

most 255k different images.

8k

8k-2

2) GF not injective =⇒ G not surjective:

Consider a segment of 8k cells, consisting of k parts of length

8. Patterns p and q are exchangeable, so the segment has at

most 255k different images.

8k

8k-2

There are, however, 28k−2 = 256k/4 different patterns of size

8k − 2. Because 255k < 256k/4 for large k, there are blue

patterns without any pre-image.

Theorem: CA G is surjective if and only if its restriction GF

to finite configurations is injective.

Theorem: CA G is surjective if and only if its restriction GF

to finite configurations is injective.

Corollary: Every injective CA is also surjective. Injectivity,

bijectivity and reversibility are equivalent concepts.

Proof: If G is injective then also GF is injective. The claim

follows from the Garden-Of-Eden -theorem.

Theorem: CA G is surjective if and only if its restriction GF

to finite configurations is injective.

Corollary: Every injective CA is also surjective. Injectivity,

bijectivity and reversibility are equivalent concepts.

Proof: If G is injective then also GF is injective. The claim

follows from the Garden-Of-Eden -theorem.

Corollary: If G is injective then GF is surjective.

Proof: If G is injective then it is reversible. The quiescent

state of G is also quiescent in G−1, so G−1 maps finite

configurations to finite configurations. So every finite

configuration has a finite pre-image.

G injective G bijective G reversible

G surjective G bijective

G surjective G injective

F

F

F F

G injective G bijective G reversible

G surjective G bijective

G surjective G injective

F

F

F F

XOR rule

In the xor-CA every configuration has exactly two pre-images,

so G is surjective:

0 0000 0 0 0 01 1 1 1 1 1 1

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.

In the xor-CA every configuration has exactly two pre-images,

so G is surjective:

0 0000 0 0 0 01 1 1 1 1 1 1

0

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.

In the xor-CA every configuration has exactly two pre-images,

so G is surjective:

0 0000 0 0 0 01 1 1 1 1 1 1

0 01

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.

In the xor-CA every configuration has exactly two pre-images,

so G is surjective:

0 0000 0 0 0 01 1 1 1 1 1 1

0 01 00 0 0 0 1

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.

In the xor-CA every configuration has exactly two pre-images,

so G is surjective:

0 0000 0 0 0 01 1 1 1 1 1 1

0 01 00 0 0 0 10

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.

In the xor-CA every configuration has exactly two pre-images,

so G is surjective:

0 0000 0 0 0 01 1 1 1 1 1 1

0 01 00 0 0 0 10111001

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.

The two pre-images of the finite configuration

0 000 0 0 0 01 0 00000 0

are both infinite:

0 01 1000 1 1 1 1 10000

01 1 0001 1 1 1 1 000001

So GF is not surjective.

G injective G bijective G reversible

G surjective G bijective

G surjective G injective

F

F

F F

XOR rule

G injective G bijective G reversible

G surjective G bijective

G surjective G injective

F

F

F F

XOR rule

controlled XOR rule

The controlled-xor CA has two binary tracks. The lower

track does not change, but it indicates which cells are active.

Non-active cells do not change at all, while active cells apply

the xor rule on the first track:

0 0000 0 0 0 01 1 1 1 1 1 1

0A A A A A A

The controlled-xor CA has two binary tracks. The lower

track does not change, but it indicates which cells are active.

Non-active cells do not change at all, while active cells apply

the xor rule on the first track:

0 00 0 0 0 01 1 1 1 1 1

0A A A A A A

1 0

The controlled-xor CA has two binary tracks. The lower

track does not change, but it indicates which cells are active.

Non-active cells do not change at all, while active cells apply

the xor rule on the first track:

0 00 0 0 0 01 1 1 1 1 1

0A A A A A A

1 0

The quiescent state is 0

The controlled-xor CA has two binary tracks. The lower

track does not change, but it indicates which cells are active.

Non-active cells do not change at all, while active cells apply

the xor rule on the first track:

0 00 0 0 0 01 1 1 1 1 1

0A A A A A A

1 0

The quiescent state is 0

The CA is not injective as all active 0’s and all active 1’s have

the same image, but every finite configuration has a finite

pre-image, so GF is surjective.

G injective G bijective G reversible

G surjective G bijective

G surjective G injective

F

F

F F

XOR rule

controlled XOR rule

Examples:

The majority rule is not surjective: finite configurations

. . . 0000000 . . . and . . . 0001000 . . .

have the same image, so GF is not injective. Pattern

01001

is an orphan.

Examples:

In Game-Of-Life a lonely living cell dies immediately, so GF is

not injective. So GOL is not surjective. Interestingly, no small

orphans are known for Game-Of-Life. Currently, the smallest

known orphan consists of 113 cells:

Examples:

The Traffic CA is the elementary CA number 226.

111 −→ 1
110 −→ 1
101 −→ 1
100 −→ 0
011 −→ 0
010 −→ 0
001 −→ 1
000 −→ 0

The local rule replaces pattern 01 by pattern 10.

111 −→ 1
110 −→ 1
101 −→ 1
100 −→ 0
011 −→ 0
010 −→ 0
001 −→ 1
000 −→ 0

111 −→ 1
110 −→ 1
101 −→ 1
100 −→ 0
011 −→ 0
010 −→ 0
001 −→ 1
000 −→ 0

111 −→ 1
110 −→ 1
101 −→ 1
100 −→ 0
011 −→ 0
010 −→ 0
001 −→ 1
000 −→ 0

111 −→ 1
110 −→ 1
101 −→ 1
100 −→ 0
011 −→ 0
010 −→ 0
001 −→ 1
000 −→ 0

The local rule is balanced. However, there are two finite

configurations with the same successor:

and hence traffic CA is not surjective.

There is an orphan of size four:

Outline of the talk(s)

(1) Definitions (configurations, neighborhoods, cellular

automata, reversibility, injectivity, surjectivity)

(2) Classical results (Hedlund’s theorem, balance in

surjective CA, Garden-Of-Eden theorem)

(3) Reversible CA (universality, billiard ball CA)

(4) Decidability questions (Wang tiles, domino problem,

snake tiles, undecidability of nilpotency, reversibility,

surjectivity, periodicity)

(5) Dynamical systems aspects (equicontinuity

classification, limit sets)

Reversible cellular automata (RCA)

Reversibility is an important aspect of physics at the

microscopic scale, so it is natural that simulations are done

using reversible CA. Despite being a very restrictive condition,

reversibility does not prevent universal computation.

It is clear that any Turing machine can be simulated by a

one-dimensional CA. In 1977 T.Toffoli demonstrated how any

d-dimensional CA can be simulated by a d + 1-dimensional

RCA. Hence two-dimensional universal RCA exist.

In 1989 K.Morita and M.Harao showed how to simulate any

reversible Turing machine by a one-dimensional RCA. Since

reversible Turing machines can be computation universal

(Bennett 1973), the following result follows:

Theorem: One-dimensional reversible cellular automata exist

that are computationally universal.

In 1989 K.Morita and M.Harao showed how to simulate any

reversible Turing machine by a one-dimensional RCA. Since

reversible Turing machines can be computation universal

(Bennett 1973), the following result follows:

Theorem: One-dimensional reversible cellular automata exist

that are computationally universal.

In the following I give a simple construction of a

one-dimensional reversible CA that simulates in real time any

Turing machine, reversible or not.

Partitioned CA (PCA) are particular types of reversible

cellular automata. The state set of a PCA is a cartesian

product of finite sets:

S = S1 × S2 × . . . Sk.

The k components are called tracks. The local update rule is

specified by providing

• a translation τi for each track i = 1, 2, . . . , k, and

• a bijective transformation

π : S −→ S

of the entire state set.

The update is done in two steps: First π is applied at all cells,

after which all tracks are translated according to τi.

Example: A three track PCA where each track is binary.

Translations of tracks are (1) shift left, (2) no move and (3)

shift right. Permutation π is

a

b

c

7→

a

a + b (mod 2)

b + c (mod 2)

PCA are clearly reversible as both elementary steps are

reversible.

Example: A three track PCA where each track is binary.

Translations of tracks are (1) shift left, (2) no move and (3)

shift right. Permutation π is

a

b

c

7→

a

a + b (mod 2)

b + c (mod 2)

PCA are clearly reversible as both elementary steps are

reversible.

Example: A three track PCA where each track is binary.

Translations of tracks are (1) shift left, (2) no move and (3)

shift right. Permutation π is

a

b

c

7→

a

a + b (mod 2)

b + c (mod 2)

PCA are clearly reversible as both elementary steps are

reversible.

Example: A three track PCA where each track is binary.

Translations of tracks are (1) shift left, (2) no move and (3)

shift right. Permutation π is

a

b

c

7→

a

a + b (mod 2)

b + c (mod 2)

PCA are clearly reversible as both elementary steps are

reversible.

Example: A three track PCA where each track is binary.

Translations of tracks are (1) shift left, (2) no move and (3)

shift right. Permutation π is

a

b

c

7→

a

a + b (mod 2)

b + c (mod 2)

PCA are clearly reversible as both elementary steps are

reversible.

Example: A three track PCA where each track is binary.

Translations of tracks are (1) shift left, (2) no move and (3)

shift right. Permutation π is

a

b

c

7→

a

a + b (mod 2)

b + c (mod 2)

PCA are clearly reversible as both elementary steps are

reversible.

Example: A three track PCA where each track is binary.

Translations of tracks are (1) shift left, (2) no move and (3)

shift right. Permutation π is

a

b

c

7→

a

a + b (mod 2)

b + c (mod 2)

PCA are clearly reversible as both elementary steps are

reversible.

To simulate a Turing machine we use a PCA with four tracks:

Track (1) is identical to the tape of the Turing machine. It is

not translated.

To simulate a Turing machine we use a PCA with four tracks:

Track (1) is identical to the tape of the Turing machine. It is

not translated.

Track (2) or (3) stores the Turing machine state. They are

shifted one cell left and right respectively. The state is stored

on the track which moves to the direction indicated by the TM

instruction being executed.

To simulate a Turing machine we use a PCA with four tracks:

Track (1) is identical to the tape of the Turing machine. It is

not translated.

Track (2) or (3) stores the Turing machine state. They are

shifted one cell left and right respectively. The state is stored

on the track which moves to the direction indicated by the TM

instruction being executed.

Track (4) is a garbage track. It is translated by two cells so

that a new empty ”trash bin” always appears at the position

of the Turing machine.

The permutation π copies first the contents of tracks (1),(2)

and (3) to the garbage track. This copying is done only at the

cell that contains the Turing machine head. Then the first

three tracks are updated according to the Turing machine

instruction.

a a ab b b b
q

TM(q,b) = (s,c,)

The permutation π copies first the contents of tracks (1),(2)

and (3) to the garbage track. This copying is done only at the

cell that contains the Turing machine head. Then the first

three tracks are updated according to the Turing machine

instruction.

b
q

a a ac b b b

s

TM(q,b) = (s,c,)

The permutation π copies first the contents of tracks (1),(2)

and (3) to the garbage track. This copying is done only at the

cell that contains the Turing machine head. Then the first

three tracks are updated according to the Turing machine

instruction.

a a ac b b b

s

TM(s,a) = (r,d,)

b
q

The permutation π copies first the contents of tracks (1),(2)

and (3) to the garbage track. This copying is done only at the

cell that contains the Turing machine head. Then the first

three tracks are updated according to the Turing machine

instruction.

a

a ac b b b

s

TM(s,a) = (r,d,)

b
q

d
r

s

The permutation π copies first the contents of tracks (1),(2)

and (3) to the garbage track. This copying is done only at the

cell that contains the Turing machine head. Then the first

three tracks are updated according to the Turing machine

instruction.

a

a ac b b b

s

TM(r,c) = (q,a,)

b
q

d
r

s

The permutation π copies first the contents of tracks (1),(2)

and (3) to the garbage track. This copying is done only at the

cell that contains the Turing machine head. Then the first

three tracks are updated according to the Turing machine

instruction.

a

a aa b b b

s

TM(r,c) = (q,a,)

b
q

d
q

s

c
r

The permutation π copies first the contents of tracks (1),(2)

and (3) to the garbage track. This copying is done only at the

cell that contains the Turing machine head. Then the first

three tracks are updated according to the Turing machine

instruction.

a

a aa b b b

s

TM(q,) = (r,a,)

b
q

d
q

s

c
r

The permutation π copies first the contents of tracks (1),(2)

and (3) to the garbage track. This copying is done only at the

cell that contains the Turing machine head. Then the first

three tracks are updated according to the Turing machine

instruction.

a

a aa b b b

s

TM(q,) = (r,a,)

b
q

d

r

s

c
r q

a

The permutation π copies first the contents of tracks (1),(2)

and (3) to the garbage track. This copying is done only at the

cell that contains the Turing machine head. Then the first

three tracks are updated according to the Turing machine

instruction.

a

a aa b b b

s

TM(r, a) = (s,d,)

b
q

d

r

s

c
r q

a

It is clear that the partially defined π is one-to-one. Any

partially defined injective map S −→ S can be completed into

a bijection by matching the missing elements in the domain

and range arbitrarily.

Note that the missing elements correspond to situations that

never occur during valid simulations of the Turing machine (for

example, when the incoming new ”garbage bin” is not empty).

N.Margolus introduced a particularly simple two-dimensional

RCA that is computationally universal, called the Billiard

Ball RCA. This CA also introduced the technique of block

permutations to guarantee reversibility.

In this technique the update is done in two steps:

��
��
��
��
��
��
��
����
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

N.Margolus introduced a particularly simple two-dimensional

RCA that is computationally universal, called the Billiard

Ball RCA. This CA also introduced the technique of block

permutations to guarantee reversibility.

In this technique the update is done in two steps:

��
��
��
��
��
��
��
����
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

1. Partition the plane into 2 × 2 blocks and apply some

permutation π1 of S4 inside each block.

N.Margolus introduced a particularly simple two-dimensional

RCA that is computationally universal, called the Billiard

Ball RCA. This CA also introduced the technique of block

permutations to guarantee reversibility.

In this technique the update is done in two steps:

��
��
��
����
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

1. Partition the plane into 2 × 2 blocks and apply some

permutation π1 of S4 inside each block.

N.Margolus introduced a particularly simple two-dimensional

RCA that is computationally universal, called the Billiard

Ball RCA. This CA also introduced the technique of block

permutations to guarantee reversibility.

In this technique the update is done in two steps:

��
��
��
����
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

2. Shift the partitioning horizontally and vertically, and apply

another permutation π2 of S4 on the new blocks.

N.Margolus introduced a particularly simple two-dimensional

RCA that is computationally universal, called the Billiard

Ball RCA. This CA also introduced the technique of block

permutations to guarantee reversibility.

In this technique the update is done in two steps:

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

2. Shift the partitioning horizontally and vertically, and apply

another permutation π2 of S4 on the new blocks.

N.Margolus introduced a particularly simple two-dimensional

RCA that is computationally universal, called the Billiard

Ball RCA. This CA also introduced the technique of block

permutations to guarantee reversibility.

In this technique the update is done in two steps:

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
����
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

The composition of the two block permutation is one iteration

of the CA. It is trivially reversible.

In the Billiard Ball RCA S is a binary set, and both

permutations π1 and π2 are identical. They only make the

following exchanges:

��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

Because of alternating partitioning, a single black state

propagates in one of the four diagonal directions:

��
��
��
��

Because of alternating partitioning, a single black state

propagates in one of the four diagonal directions:

��
��
��
��

Because of alternating partitioning, a single black state

propagates in one of the four diagonal directions:

��
��
��
��

Because of alternating partitioning, a single black state

propagates in one of the four diagonal directions:

��
��
��
��

Because of alternating partitioning, a single black state

propagates in one of the four diagonal directions:

��
��
��
��

Because of alternating partitioning, a single black state

propagates in one of the four diagonal directions:

��
��
��
��

Two particles that collide sideways pause for a moment and

reverse their direction:

Two particles that collide sideways pause for a moment and

reverse their direction:

Two particles that collide sideways pause for a moment and

reverse their direction:

Two particles that collide sideways pause for a moment and

reverse their direction:

Two particles that collide sideways pause for a moment and

reverse their direction:

Two particles that collide sideways pause for a moment and

reverse their direction:

In the Billiard Ball RCA one can simulate the motion and

collisions of balls of positive diameter. Walls from which the

balls bounce can also be created. Amazingly, these constructs

are sufficient to perform arbitrary computation, proving the

computational universality of the Billiard Ball RCA.

In the Billiard Ball RCA one can simulate the motion and

collisions of balls of positive diameter. Walls from which the

balls bounce can also be created. Amazingly, these constructs

are sufficient to perform arbitrary computation, proving the

computational universality of the Billiard Ball RCA.

Reversibility is trivially obtained using the block permutation

technique. Also conservation laws are easy to enforce. For

example, if the permutations π1 and π2 are such that they

preserve the numbers of black states (e.g. as in the Billiard

Ball RCA) then the whole CA conserves the number of black

states.

Reversible CA come up naturally when simulating reversible

physical systems.

Reversible CA come up naturally when simulating reversible

physical systems.

Conversely, physically building a cellular automata device in

the reversible physical universe is most energy efficient if the

CA is reversible. In fact, whenever a physical device erases

information (by performing, say, a logical AND operation) it

must dissipate energy from the system, usually in the form of

heat.

It is more energy efficient to use only reversible logical

operations during computation.

The problem with reversible CA is that reversibility is global:

the transformation G : SZ
d

−→ SZ
d

is bijective on infinite

configurations.

In order to exploit the reversibility of RCA they should be

implemented using finite reversible logical gates. However, CA

are given in terms of the local update rule f : Sn −→ S that is

not reversible:

f

Rather than using the non-reversible local rule f we would

need to use reversible local functions

π

Partitioned CA, and the block partitioning technique of the

Billiard Ball RCA are examples where the local rule was given

in terms of reversible local rules. A natural question: Can

every RCA be expressed using reversible local rules ?

In other words, we would like to replace a traditional CA

f f f f fff

with something like

that computes the same global function G : SZ
d

−→ SZ
d

.

The answer is positive in one- and two-dimensional spaces:

• Every one-dimensional RCA is a composition of two block

permutations and a translation of a track.

The answer is positive in one- and two-dimensional spaces:

• Every one-dimensional RCA is a composition of two block

permutations and a translation of a track.

Terminology used: A block permutation consists of

partitioning the space into congruent finite segments

(rectangles, hypercubes in higher dimensions), and applying a

permutation π inside every block:

The answer is positive in one- and two-dimensional spaces:

• Every one-dimensional RCA is a composition of two block

permutations and a translation of a track.

Translating a track means expressing the state set as a

cartesian product

S = S1 × S2

and translating the S1-components.

The answer is positive in one- and two-dimensional spaces:

• Every one-dimensional RCA is a composition of two block

permutations and a translation of a track.

• Every two-dimensional RCA is a composition of three block

permutations and a translation of a track.

The answer is positive in one- and two-dimensional spaces:

• Every one-dimensional RCA is a composition of two block

permutations and a translation of a track.

• Every two-dimensional RCA is a composition of three block

permutations and a translation of a track.

The question is open for three-dimensional CA.

Conjecture: Every d-dimensional RCA can be expressed as a

composition of block permutations and a translation of a track.

(We know that if the conjecture holds then d + 1 block

permutations suffice.)

Outline of the talk(s)

(1) Definitions (configurations, neighborhoods, cellular

automata, reversibility, injectivity, surjectivity)

(2) Classical results (Hedlund’s theorem, balance in

surjective CA, Garden-Of-Eden theorem)

(3) Reversible CA (universality, billiard ball CA)

(4) Decidability questions (Wang tiles, domino problem,

snake tiles, undecidability of nilpotency, reversibility,

surjectivity, periodicity)

(5) Dynamical systems aspects (equicontinuity

classification, limit sets)

Decidability questions

Suppose we are given a CA (in terms of its local update rule)

and want to know if it is reversible or surjective ? Is there an

algorithm to decide this ? Or is there an algorithm to

determine if the dynamics of a given CA is trivial in the sense

that after a while all activity has died ?

It turns out that many such algorithmic problems are

undecidable. In some cases there is an algorithm for

one-dimensional CA while the two-dimensional case is

undecidable.

A useful tool to obtain undecidability results is the concept of

Wang tiles and the undecidable tiling problem.

A Wang tile is a unit square tile with colored edges. A tile

set T is a finite collection of such tiles. A valid tiling is an

assignment

Z
2 −→ T

of tiles on infinite square lattice so that the abutting edges of

adjacent tiles have the same color.

A B C D

A Wang tile is a unit square tile with colored edges. A tile

set T is a finite collection of such tiles. A valid tiling is an

assignment

Z
2 −→ T

of tiles on infinite square lattice so that the abutting edges of

adjacent tiles have the same color.

For example, consider Wang tiles

A B C D

With copies of the given four tiles we can properly tile a 5 × 5

square. . .

A

B

C

D

C

A

C

B

D

C

B

D

A

C

C

B

D

C

A

C

B

A

C

D

C

. . . and since the colors on the borders match this square can

be repeated to form a valid periodic tiling of the plane.

The set of valid tilings using elements of T is a translation

invariant, compact subset of the configuration space T Z
2

.

It is a two-dimensional counter-part of a subshift of finite

type used in symbolic dynamics, as it can be defined via a

finite collection of patterns that are not allowed in any valid

tiling.

The set of valid tilings using elements of T is a translation

invariant, compact subset of the configuration space T Z
2

.

It is a two-dimensional counter-part of a subshift of finite

type used in symbolic dynamics, as it can be defined via a

finite collection of patterns that are not allowed in any valid

tiling.

We also use the following terminology: Configuration c ∈ T Z
2

is valid inside M ⊆ Z
2 if the colors match between any two

neighboring cells, both of which are inside region M .

A configuration c ∈ T Z
2

is periodic if there are two linearly

independent translations τ1 and τ2 that keep c invariant:

τ1(c) = τ2(c) = c.

Then c is also invariant under some horizontal and vertical

translations.

More generally, a d-dimensional configuration c ∈ SZ
d

is

periodic if it is invariant under d linearly independent

translations.

For d = 1 this is just the usual periodicity of infinite words.

The tiling problem of Wang tiles is the decision problem to

determine if a given finite set of Wang tiles admits a valid

tiling of the plane.

Theorem (R.Berger 1966): The tiling problem of Wang

tiles is undecidable.

Observations:

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

Observations:

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

Follows from compactness: Let Cn be the set of configurations

that satisfy the tiling constraint inside the (2n + 1) × (2n + 1)

square centered at the origin. Then

C1 ⊇ C2 ⊇ C3 ⊇ . . .

is a decreasing chain of non-empty compact sets. Hence their

intersection is non-empty.

Observations:

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

Observations:

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

Follows from (1): Just try tiling larger and larger squares until

(if ever) a square is found that can not be tiled.

Observations:

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

(3) There is a semi-algorithm to recursively enumerate tile

sets that admit a valid periodic tiling.

Observations:

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

(3) There is a semi-algorithm to recursively enumerate tile

sets that admit a valid periodic tiling.

Reason: Just try tiling rectangles until (if ever) a valid tiling is

found where colors on the top and the bottom match, and left

and the right sides match as well.

Observations:

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

(3) There is a semi-algorithm to recursively enumerate tile

sets that admit a valid periodic tiling.

(4) There exist aperiodic sets of Wang tiles. These

• admit valid tilings of the plane, but

• do not admit any periodic tiling

Observations:

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

(3) There is a semi-algorithm to recursively enumerate tile

sets that admit a valid periodic tiling.

(4) There exist aperiodic sets of Wang tiles. These

• admit valid tilings of the plane, but

• do not admit any periodic tiling

Follows from (2), (3) and undecidability of the tiling problem.

The tiling problem can be reduced to various decision

problems concerning (two-dimensional) cellular automata, so

that the undecidability of these problems then follows from

Berger’s result.

This is not so surprising since Wang tilings are ”static”

versions of ”dynamic” cellular automata.

Example: Let us prove that it is undecidable whether a given

two-dimensional CA G has any fixed point configurations, that

is, configurations c such that G(c) = c.

Proof: Reduction from the tiling problem. For any given

Wang tile set T (with at least two tiles) we effectively

construct a two-dimensional CA with state set T , the von

Neumann -neighborhood and a local update rule that keeps a

tile unchanged if and only if its colors match with the

neighboring tiles.

Trivially, G(c) = c if and only if c is a valid tiling.

Example: Let us prove that it is undecidable whether a given

two-dimensional CA G has any fixed point configurations, that

is, configurations c such that G(c) = c.

Proof: Reduction from the tiling problem. For any given

Wang tile set T (with at least two tiles) we effectively

construct a two-dimensional CA with state set T , the von

Neumann -neighborhood and a local update rule that keeps a

tile unchanged if and only if its colors match with the

neighboring tiles.

Trivially, G(c) = c if and only if c is a valid tiling.

Note: For one-dimensional CA it is decidable whether fixed

points exist. Fixed points form a subshift of finite type that

can be effectively constructed.

More interesting reduction: A CA is called nilpotent if all

configurations eventually evolve into the quiescent

configuration.

Observation: In a nilpotent CA all configurations must

become quiescent within a bounded time, that is, there is

number n such that Gn(c) is quiescent, for all c ∈ SZ
d

.

More interesting reduction: A CA is called nilpotent if all

configurations eventually evolve into the quiescent

configuration.

Observation: In a nilpotent CA all configurations must

become quiescent within a bounded time, that is, there is

number n such that Gn(c) is quiescent, for all c ∈ SZ
d

.

Proof: Suppose contrary: for every n there is a configuration

cn such that Gn(cn) is not quiescent. Then cn contains a finite

pattern pn that evolves in n steps into some non-quiescent

state. A configuration c that contains a copy of every pn never

becomes quiescent, contradicting nilpotency.

Theorem (Culik, Pachl, Yu, 1989): It is undecidable

whether a given two-dimensional CA is nilpotent.

Theorem (Culik, Pachl, Yu, 1989): It is undecidable

whether a given two-dimensional CA is nilpotent.

Proof: For any given set T of Wang tiles the goal is to

construct a two-dimensional CA that is nilpotent if and only if

T does not admit a tiling.

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

B A

C

C

D A

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

B A

C

C

D A

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

B A

C

C

D A

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

B A

C

C

D A

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

B A

C

D q

D

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

B A D q

C

q

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

=⇒ If T admits a tiling c then c is a non-quiescent fixed point

of the CA. So the CA is not nilpotent.

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

=⇒ If T admits a tiling c then c is a non-quiescent fixed point

of the CA. So the CA is not nilpotent.

⇐= If T does not admit a valid tiling then every n × n square

contains a tiling error, for some n. State q propagates, so in at

most 2n steps all cells are in state q. The CA is nilpotent.

If we do the previous construction for an aperiodic tile set T

we obtain a two-dimensional CA in which every periodic

configuration becomes eventually quiescent, but there are some

non-periodic fixed points.

If we do the previous construction for an aperiodic tile set T

we obtain a two-dimensional CA in which every periodic

configuration becomes eventually quiescent, but there are some

non-periodic fixed points.

Another interesting observation is that while in nilpotent CA

all configurations become quiescent within bounded time, that

transient time can be very long: one cannot compute any

upper bound on it as otherwise nilpotency could be effectively

checked.

While tilings relate naturally to two-dimensional CA, one can

still strengthen Berger’s result so that the nilpotency can be

proved undecidable for one-dimensional CA as well.

Tile set T is NW-deterministic if no two tiles have identical

colors on their top edges and on their left edges. In a valid

tiling the left and the top neighbor of a tile uniquely determine

the tile.

For example, our sample tile set

A B C D

is NW-deterministic.

In any valid tiling by NW-deterministic tiles, NE-to-SW

diagonals uniquely determine the next diagonal below them.

The tiles of the next diagonal are determined locally from the

previous diagonal:

C

A

C

D

B

C

A

C

D

B

In any valid tiling by NW-deterministic tiles, NE-to-SW

diagonals uniquely determine the next diagonal below them.

The tiles of the next diagonal are determined locally from the

previous diagonal:

C

A

C

D

B

C

A

C

D

B

D

D

B

B

C

C

C

C

A

A

A

In any valid tiling by NW-deterministic tiles, NE-to-SW

diagonals uniquely determine the next diagonal below them.

The tiles of the next diagonal are determined locally from the

previous diagonal:

C

A

C

D

B

C

A

C

D

B

D

D

B

B

C

C

C

C

A

A

A D

D

B

C

A

C

B

C

A

C

In any valid tiling by NW-deterministic tiles, NE-to-SW

diagonals uniquely determine the next diagonal below them.

The tiles of the next diagonal are determined locally from the

previous diagonal:

C

A

C

D

B

C

A

C

D

B

D

D

B

B

C

C

C

C

A

A

A D

D

B

C

A

C

B

C

A

C

B

C

A

C

D

B

C

A

C

D

B

If diagonals are interpreted as configurations of a radius-1
2

one-dimensional CA, valid tilings represent space-time

diagrams.

A
B
C

If diagonals are interpreted as configurations of a radius-1
2

one-dimensional CA, valid tilings represent space-time

diagrams.

More precisely, for any given NW-deterministic tile set T we

construct a one-dimensional CA whose

• state set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

A
B
C

If diagonals are interpreted as configurations of a radius-1
2

one-dimensional CA, valid tilings represent space-time

diagrams.

More precisely, for any given NW-deterministic tile set T we

construct a one-dimensional CA whose

• state set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• neighborhood is (0, 1),

A
B
C

If diagonals are interpreted as configurations of a radius-1
2

one-dimensional CA, valid tilings represent space-time

diagrams.

More precisely, for any given NW-deterministic tile set T we

construct a one-dimensional CA whose

• state set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• neighborhood is (0, 1),

• local rule f : S2 −→ S is defined as follows:

– f(A,B) = C if the colors match in
A

B
C

– f(A,B) = q if A = q or B = q or no matching tile C

exists.

Claim: The CA is nilpotent if and only if T does not admit a

tiling.

Claim: The CA is nilpotent if and only if T does not admit a

tiling.

Proof:

=⇒ If T admits a tiling c then diagonals of c are

configurations that never evolve into the quiescent

configuration. So the CA is not nilpotent.

Claim: The CA is nilpotent if and only if T does not admit a

tiling.

Proof:

=⇒ If T admits a tiling c then diagonals of c are

configurations that never evolve into the quiescent

configuration. So the CA is not nilpotent.

⇐= If T does not admit a valid tiling then every n × n square

contains a tiling error, for some n. Hence state q is created

inside every segment of length n. Since q starts spreading once

it has been created, the whole configuration becomes

eventually quiescent.

Now we just need the following strengthening of Berger’s

theorem:

Theorem: The tiling problem is undecidable among

NW-deterministic tile sets.

and we have

Theorem: It is undecidable whether a given one-dimensional

CA (with spreading state q) is nilpotent.

If we do our construction using an aperiodic NW-deterministic

tile set (these exist!) then we have an interesting

one-dimensional CA in which all periodic configurations

eventually die, but there are non-periodic configurations that

never create a quiescent state in any cell.

If we do our construction using an aperiodic NW-deterministic

tile set (these exist!) then we have an interesting

one-dimensional CA in which all periodic configurations

eventually die, but there are non-periodic configurations that

never create a quiescent state in any cell.

As in the two-dimensional case, the transient time before a

one-dimensional nilpotent CA dies can be very long: it cannot

be bounded by any computable function.

Analogously we can define NE-, SW- and SE-determinism of

tile sets. A tile set is called 4-way deterministic if it is

deterministic in all four corners.

Our sample tile set is 4-way deterministic

A B C D

Analogously we can define NE-, SW- and SE-determinism of

tile sets. A tile set is called 4-way deterministic if it is

deterministic in all four corners.

Our sample tile set is 4-way deterministic

A B C D

We recently showed the following:

Theorem: The tiling problem is undecidable among 4-way

deterministic tile sets.

This result provides some undecidability results for dynamics

of reversible one-dimensional CA.

Next: Some interesting (and useful) properties of a particular

tile set called Snakes.

In addition to colored edges, these tiles also have an arrow

printed on them. The arrow is horizontal or vertical and it

points to one of the four neighbors of the tile:

Such tiles with arrows are called directed tiles.

Given a configuration (valid tiling or not!) and a starting

position, the arrows specify a path on the plane. Each position

is followed by the neighboring position indicated by the arrow

of the tile:

Given a configuration (valid tiling or not!) and a starting

position, the arrows specify a path on the plane. Each position

is followed by the neighboring position indicated by the arrow

of the tile:

The path may enter a loop. . .

Given a configuration (valid tiling or not!) and a starting

position, the arrows specify a path on the plane. Each position

is followed by the neighboring position indicated by the arrow

of the tile:

. . . or the path may be infinite and never return to a tile

visited before.

The directed tile set Snakes has the following property: On

any configuration (valid tiling or not) and on any path that

follows the arrows one of the following two things happens:

(1) Either there is a tiling error between two tiles both of

which are on the path,

TILING ERROR

The directed tile set Snakes has the following property: On

any configuration (valid tiling or not) and on any path that

follows the arrows one of the following two things happens:

(1) Either there is a tiling error between two tiles both of

which are on the path,

(2) or the path is a plane-filling path, that is, for every positive

integer n there exists an n× n square all of whose positions are

visited by the path.

The directed tile set Snakes has the following property: On

any configuration (valid tiling or not) and on any path that

follows the arrows one of the following two things happens:

(1) Either there is a tiling error between two tiles both of

which are on the path,

(2) or the path is a plane-filling path, that is, for every positive

integer n there exists an n× n square all of whose positions are

visited by the path.

Note that the tiling may be invalid outside path P , yet the

path is forced to snake through larger and larger squares.

Snakes also has the property that it admits a valid tiling.

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

First application of Snakes: An example of a two-dimensional

CA that is injective on periodic configurations but is not

injective on all configurations.

First application of Snakes: An example of a two-dimensional

CA that is injective on periodic configurations but is not

injective on all configurations.

Let GP denote the restriction of CA function G into periodic

configurations.

Among one-dimensional CA the following facts hold:

G injective ⇐⇒ GP injective,

G surjective ⇐⇒ GP surjective.

G injective G bijective G reversible G injective

G surjective G bijective

G surjective G injective G surjective

F

F

F F

XOR

controlled XOR

P

P

Among two-dimensional CA only the implications are easy:

G injective =⇒ GP injective,

G surjective ⇐= GP surjective.

G injective G bijective G reversible

G surjective G bijective

G surjective G injective

F

F

F F

XOR

controlled XOR

P

PG injective

G surjective

XOR

XOR

controlled XOR

Among two-dimensional CA only the implications are easy:

G injective =⇒ GP injective,

G surjective ⇐= GP surjective.

G injective G bijective G reversible

G surjective G bijective

G surjective G injective

F

F

F F

XOR

controlled XOR

P

PG injective

G surjective

XOR

XOR

controlled XOR

Snake XOR

The Snake XOR CA is similar to the Controlled XOR CA

except that the control layer is based on the tile set Snakes.

The state set of the CA is

S = Snakes × {0, 1}.

(Each snake tile is attached a red bit.)

1

The local rule checks whether the tiling is valid at the cell:

• If there is a tiling error, no change in the state.

0

0

0
1

1

The local rule checks whether the tiling is valid at the cell:

• If there is a tiling error, no change in the state.

• If the tiling is valid, XOR rule is applied with the neighbor

pointed to by the arrow on the tile.

0

0

0
1

1

The local rule checks whether the tiling is valid at the cell:

• If there is a tiling error, no change in the state.

• If the tiling is valid, XOR rule is applied with the neighbor

pointed to by the arrow on the tile.

0

0

0
0

1

Snake XOR is not injective:

The following two configurations have the same successor: The

Snakes tilings of the configurations form the same valid tiling

of the plane. In one of the configurations all bits are set to 0,

and in the other configuration all bits are 1.

All cells are active because the tilings are correct. This means

that all bits in both configurations become 0. So the two

configurations become identical. The CA is not injective.

Snake XOR is injective on periodic configurations:

Suppose there are different periodic configurations c and d

with the same successor. Since only bits may change, c and d

must have identical Snakes tiles everywhere. So they must

have different bits 0 and 1 in some position ~p1 ∈ Z
2.

Snake XOR is injective on periodic configurations:

Suppose there are different periodic configurations c and d

with the same successor. Since only bits may change, c and d

must have identical Snakes tiles everywhere. So they must

have different bits 0 and 1 in some position ~p1 ∈ Z
2.

Because c and d have identical successors, the cell in position

~p1 must be active, that is, the Snakes tiling is valid in

position ~p1. Moreover, the bits stored in the neighboring

position ~p2 (pointed by the arrow) are different in c and d.

Hence we can repeat the reasoning in position ~p2.

The same reasoning can be repeated over and over again. The

positions ~p1, ~p2, ~p3, . . . form a path that follows the arrows on

the tiles. There is no tiling error at any tile on this path.

But this contradicts the fact that the plane filling property of

Snakes guarantees that on periodic tiling every path

encounters a tiling error.

G injective G bijective G reversible

G surjective G bijective

G surjective G injective

F

F

F F

XOR

controlled XOR

P

PG injective

G surjective

XOR

XOR

controlled XOR

Snake XOR

G injective G bijective G reversible

G surjective G bijective

G surjective G injective

F

F

F F

XOR

controlled XOR

P

PG injective

G surjective

XOR

XOR

controlled XOR

??

??

??

Snake XOR

There are three implications whose status is unknown!

Second application of Snakes: It is undecidable to determine

if a given two-dimensional CA is reversible.

Snakes

T

0/1

Second application of Snakes: It is undecidable to determine

if a given two-dimensional CA is reversible.

The proof is a reduction from the tiling problem, using the tile

set Snakes.

For any given tile set T we construct a CA with the state set

S = T × Snakes × {0, 1}.

Snakes

T

0/1

The local rule is analogous to Snake XOR with the difference

that the correctness of the tiling is checked in both tile layers:

• If there is a tiling error then the cell is inactive.

0

0

0
1

1

The local rule is analogous to Snake XOR with the difference

that the correctness of the tiling is checked in both tile layers:

• If there is a tiling error then the cell is inactive.

• If both tilings are correct at the cell then the bit of the cell

is updated using the XOR rule with the neighboring cell in

the direction of the arrow.

0

0

0
1

1

The local rule is analogous to Snake XOR with the difference

that the correctness of the tiling is checked in both tile layers:

• If there is a tiling error then the cell is inactive.

• If both tilings are correct at the cell then the bit of the cell

is updated using the XOR rule with the neighboring cell in

the direction of the arrow.

0

0

0
0

1

We can reason exactly as with Smake XOR, and show that

the CA is reversible if and only if the tile set T does not admit

a plane tiling:

We can reason exactly as with Smake XOR, and show that

the CA is reversible if and only if the tile set T does not admit

a plane tiling:

(=⇒) If a valid tiling of the plane exists then we can construct

two different configurations of the CA that have the same

image under G. The Snakes and the T layers of the

configurations form the same valid tilings of the plane. In one

of the configurations all bits are 0, and in the other

configuration all bits are 1.

All cells are active because the tilings are correct. This means

that all bits in both configurations become 0. So the two

configurations become identical. The CA is not injective.

(⇐=) Conversely, assume that the CA is not injective. Let c

and d be two different configurations with the same successor.

Since only bits may change, c and d must have identical

Snakes and T layers. So they must have different bits 0 and 1

in some position ~p1 ∈ Z
2.

(⇐=) Conversely, assume that the CA is not injective. Let c

and d be two different configurations with the same successor.

Since only bits may change, c and d must have identical

Snakes and T layers. So they must have different bits 0 and 1

in some position ~p1 ∈ Z
2.

Because c and d have identical successors, the cell in position

~p1 must be active, that is, the tilings with both tile components

are valid in position ~p1. Moreover, the bits stored in the

neighboring position ~p2 (pointed by the arrow) are different in

c and d. Hence we can repeat the reasoning in position ~p2.

The same reasoning can be repeated over and over again. The

positions ~p1, ~p2, ~p3, . . . form a path that follows the arrows on

the tiles. There is no tiling error at any tile on this path so the

special property of Snakes forces the path to cover arbitrarily

large squares.

Hence T admits tilings of arbitrarily large squares, and

consequently a tiling of the infinite plane.

Theorem: It is undecidable whether a given two-dimensional

CA is injective.

An analogous (but simpler!) construction can be made for the

surjectivity problem, based on the fact surjectivity is

equivalent to injectivity on finite configurations:

Theorem: It is undecidable whether a given two-dimensional

CA is surjective.

Both problems are semi-decidable in one direction:

Injectivity is semi-decidable: Enumerate all CA G one-by

one and check if G is the inverse of the given CA. Halt once (if

ever) the inverse is found.

Non-surjectivity is semi-decidable: Enumerate all finite

patterns one-by-one and halt once (if ever) an orphan is found.

From the undecidability of injectivity we obtain the interesting

fact that there are some reversible CA that use von Neumann

neighborhood but whose inverse automata use a very large

neighborhood: There can be no computable upper bound on

the extend of this inverse neighborhood.

So while topological arguments show that a finite

neighborhood is enough to determine the previous state of a

cell, computation theory shows that this neighborhood may be

extremely large.

From the undecidability of surjectivity we see that that there

are non-surjective CA whose smallest orphan is very large:

There can be no computable upper bound on the extend of the

smallest orphan.

So while the smallest known orphan for Game-Of-Life is pretty

big (113 cells), this pales in comparison with some other CA.

Both reversibility and surjectivity can be easily decided among

one-dimensional CA:

Theorem (Amoroso, Patt 1972): It is decidable whether a

given one-dimensional CA is injective (or surjective).

Both reversibility and surjectivity can be easily decided among

one-dimensional CA:

Theorem (Amoroso, Patt 1972): It is decidable whether a

given one-dimensional CA is injective (or surjective).

We also know the tight bound on the extend of the inverse

neighborhood: The neighborhood of a radius-1
2 injective CA

with n states consists of at most n − 1 consecutive cells.

Both reversibility and surjectivity can be easily decided among

one-dimensional CA:

Theorem (Amoroso, Patt 1972): It is decidable whether a

given one-dimensional CA is injective (or surjective).

We also know the tight bound on the extend of the inverse

neighborhood: The neighborhood of a radius-1
2 injective CA

with n states consists of at most n − 1 consecutive cells.

We do not know any polynomial upper bound on the length of

the smallest orphan for a radius- 1
2 non-surjective CA with n

states.

A CA G is called periodic if all configurations are temporally

periodic. In this case there is a positive integer n such that Gn

is the identity function.

The CA we constructed in the undecidability proof for

reversibility is periodic when reversible. Hence we have

Theorem: It is undecidable whether a given two-dimensional

CA is periodic.

A CA G is called periodic if all configurations are temporally

periodic. In this case there is a positive integer n such that Gn

is the identity function.

The CA we constructed in the undecidability proof for

reversibility is periodic when reversible. Hence we have

Theorem: It is undecidable whether a given two-dimensional

CA is periodic.

Recently (in 2008) with N.Ollinger we showed that periodicity

is also undecidable among one-dimensional CA:

Theorem: It is undecidable whether a given one-dimensional

CA is periodic.

Outline of the talk(s)

(1) Definitions (configurations, neighborhoods, cellular

automata, reversibility, injectivity, surjectivity)

(2) Classical results (Hedlund’s theorem, balance in

surjective CA, Garden-Of-Eden theorem)

(3) Reversible CA (universality, billiard ball CA)

(4) Decidability questions (Wang tiles, domino problem,

snake tiles, undecidability of nilpotency, reversibility,

surjectivity, periodicity)

(5) Dynamical systems aspects (equicontinuity

classification, limit sets)

A topological dynamical system is a pair (X,F) where X is a

compact space and F : X −→ X is continuous. We know that

(SZ
d

, G) is such a dynamical system, so concepts and methods

of topological dynamics can be applied to cellular automata.

In the study of chaotic behavior one is interested in the

propagation of errors during iterations of the system. This is

also relevant to simulations by cellular automata: iterations of

the CA inside a finite window may not give a reliable picture if

the system is sensitive to changes in states outside the

observation window.

The results reported here are proved for one-dimensional CA.

Nevertheless, the concepts can be defined for any

dimensionality d.

Configuration c ∈ SZ
d

is a point of equicontinuity if for

every finite window M ⊆ Z
d there is another finite window

N ⊆ Z
d such that changes in configuration c outside window

N can have no effect inside M at any time:

x|N = c|N =⇒ ∀t ≥ 0 : Gt(x)|M = Gt(c)|M .

A CA is called equicontinuous if all configurations are points

of equicontinuity.

Equicontinuous CA can be reliably simulated up to any

precision.

Unfortunately, only trivial CA can be equicontinuos:

Theorem (Kurka): A CA is equicontinuous if and only if it

is eventually periodic, that is, there is a preperiod m and a

period p > 0 such that Gm+p = Gm.

All surjective CA that are eventually periodic are periodic, so

we have:

Theorem (Blanchard and Tisseur): A surjective CA is

equicontinuous if and only if it is periodic.

As periodicity is undecidable, we see that equicontinuity is an

undecidable property, even among one-dimensional injective

CA.

We call a CA almost equicontinuous if there are some

points of equicontinuity.

A CA is sensitive (to initial conditions) if there is a finite

observation window M ⊆ Z
d such that differences to any

configuration arbitrarily far away from M can propagate inside

M .

More precisely, for all configurations c and all finite windows

N there is a configuration e that agrees with c inside window

N but Gt(c) and Gt(e) disagree inside window M , for some t.

It is clear that if the CA has points of equicontinuity then it

cannot be sensitive, but also the converse is true:

Theorem A CA is sensitive if and only if it has no points of

equicontinuity.

It was proved by B.Durand, et.al. that it is undecidable

whether a given one-dimensional CA is sensitive.

Almost equicontinuous

Equicontinuous

Surjective

Sensitive

Reversible

A CA is called positively expansive if there exists a finite

observation window M ⊆ Z
d such that all differences in

configurations eventually propagate inside M . This is a very

strong form of sensitivity.

More precisely, positive expansivity means that for all

configurations c 6= e there is time t such that Gt(c) and Gt(e)

differ inside window M .

A CA is called positively expansive if there exists a finite

observation window M ⊆ Z
d such that all differences in

configurations eventually propagate inside M . This is a very

strong form of sensitivity.

More precisely, positive expansivity means that for all

configurations c 6= e there is time t such that Gt(c) and Gt(e)

differ inside window M .

There are no two- or higher dimensional positively expansive

CA, there are no reversible positively expansive CA, while all

positively expansive CA are surjective and sensitive to initial

conditions.

Open problem: Is it decidable whether a given

one-dimensional CA is positively expansive ?

Almost equicontinuous

Equicontinuous

Surjective

Sensitive

Reversible

Positively
expansive

Based on these concepts Kurka proposed an equicontinuity

classification of one-dimensional cellular automata into four

classes, in the increasing order of sensitivity to changes in the

initial configuration:

(K1) Equicontinuous CA,

(K2) Almost equicontinuous but non-equicontinuous CA,

(K3) Sensitive but not positively expansive CA,

(K4) Positively expansive CA.

There are surjective CA in all four classes. There are reversible

CA only in the first three classes.

Finally, a property dealing with mixing of configurations can

be related to the equicontinuity classification: A CA is called

transitive if for any two cylinders U and V there exists time t

such that Gt(U) ∩ V 6= ∅.

Theorem (Blanchard, Maass) and Kurka: Every positive

expansive CA is transitive. Every transitive CA is surjective

and sensitive.

Almost equicontinuous

Equicontinuous

Surjective

Sensitive

Reversible

Positively
expansive

Transitive

Different definitions of chaotic systems exist. A widely used

definition by Devaney defines a dynamical system to be

chaotic if

(1) it is transitive,

(2) temporally periodic points are dense,

(3) it is sensitive to initial conditions.

Because in CA transitivity implies sensitivity so only

conditions (1) and (2) remain.

Different definitions of chaotic systems exist. A widely used

definition by Devaney defines a dynamical system to be

chaotic if

(1) it is transitive,

(2) temporally periodic points are dense,

(3) it is sensitive to initial conditions.

Because in CA transitivity implies sensitivity so only

conditions (1) and (2) remain.

Open problem: Are temporally periodic configurations dense

when G is surjective ?

(If so then transitivity is equivalent to Devaney’s chaos.)

Limit sets. . . under construction. . .

Conclusion

There are many topics not covered in this tutorial, many

advanced results were not discussed, and many variants of the

basic definitions were not mentioned. Topics left out include,

for example,

• language recognition by cellular automata,

• linear cellular automata (=additive rules),

• intrinsic universality in cellular automata,

• error resilience in cellular automata

• asynchronous and stochastic CA,

• quantum CA,

• CA on Cayley graphs,

• dynamics under alternative topologies,

• firing squad synchronization problem and other cellular

algorithms,

• measure theoretic approach.

Some open problems

• Universality of elementary rule 54.

• Do following implications hold on two-dimensional CA:

G surjective =⇒ GP surjective

GF surjective =⇒ GP surjective

GP injective =⇒ GF surjective

• Are three- and higher dimensional RCA compositions of

block permutations and translations of a track ?

• Are temporally periodic configurations dense on surjective

CA ?

• Is it decidable if a given CA is positively expansive ?

